Chapter 1

Rings

1.1 Definitions and Examples

(III.1, III.2)

Def. A ring $\langle R, +, \cdot \rangle$ consists of

a nonempty set R and two binary operations + and \cdot

that satisfy the axioms:

- 1. $\langle R, + \rangle$ is an abelian group;
- 2. (ab)c = a(bc) (associative multiplication);
- 3. a(b+c) = ab + ac, (b+c)a = ba + ca. (distributive laws)

Moreover, the ring R is a

- commutative ring if ab = ba;
- ring with identity if R contains an element 1_R such that 1_R a = a $1_R = a$ for all $a \in R$.

Conventions: (1) $ab = a \cdot b$; (2) $na = a + a + \cdots + a$ (n summands) for $n \in \mathbf{Z}$ and $a \in R$; (3) 1_R denotes either the identity of R, or the identity map $1_R : R \to R$.

Ex. The ring **Z** of integers is a commutative ring with identity. So are **Q**, **R**, **C**, **Z**_n, **R**[x], etc.

Ex. 3Z is a commutative ring with no identity.

Ex. The ring $\mathbf{Z}^{2\times 2}$ of 2×2 matrices with integer coefficients is a noncommutative ring with identity.

Ex. $(3\mathbf{Z})^{2\times 2}$ is a noncommutative ring with no identity.

Basic Properties of Rings: Let R be a ring. Then

- 1. 0a = a0 = 0;
- 2. a(-b) = (-a)b = -(ab);
- 3. (-a)(-b) = ab;
- 4. (na)b = a(nb) = n(ab) for all $n \in \mathbb{Z}$ and $a, b \in \mathbb{R}$;
- 5. $(\sum_{i=1}^{n} a_i)(\sum_{j=1}^{m} b_j) = \sum_{i=1}^{n} \sum_{j=1}^{m} a_i b_j$ for all $a_i, b_j \in R$.

Def. A nonzero element $a \in R$ is a **left zero divisor** if there is a nonzero $b \in R$ such that ab = 0 (so b is a right zero divisor.) The element a is a **zero divisor** if a is both a left zero divisor and a right zero divisor.

A ring R has no left/right divisors iff the left/right cancellation laws hold in R: for all $a, b, c \in R$ with $a \neq 0$,

$$ab = ac$$
 or $ba = ca \implies b = c$.

Def. An element a in a ring R with identity is **left invertible** if there is $c \in R$ such that $ca = 1_R$. An element a is **invertible** or a unit if it is both left and right invertible.

Def. Let R be a ring with identity $1_R \neq 0$. Then R is a integral domain commutative ring, with no zero divisor; division ring every nonzero element is a unit; field commutative division ring = integral domain + division ring.

Ex. Z is an integral domain. So is $\mathbf{Z}[x]$.

 $\mathbf{E}\mathbf{x}$.

1. \mathbf{Z}_6 is a commutative ring with identity. identity: 1

units: 1, 5 zero divisors: 2, 3, 4

- 2. \mathbb{Z}_7 is a field. We have $1 \cdot 1 = 2 \cdot 4 = 3 \cdot 5 = 6 \cdot 6 = 1$ in \mathbb{Z}_7 .
- 3. In general, if n is a positive integer and is not a prime, then \mathbf{Z}_n has zero divisors; If p is a positive prime, then Z_p is a field.

Def. Let R be a ring. If there is a least positive integer n such that na = 0 for all $a \in R$, then R is said to have **characteristic** n (charR = n). If no such n exists, then R is said to have **characteristic zero**.

Ex. \mathbb{Z}_n has characteristic n. In general, if a ring R has identity 1_R , then char R is the least positive integer n (if it exists) such that $n1_R = 0$.

Ex (polynomial ring). If R is a ring, then $R[x] = \{\sum_{i=0}^{n} r_i x^i \mid n \in \mathbf{Z}\}$ is the polynomial ring of R. The ring R[x] is commutative iff R is. The ring R[x] has identity iff R has. R can be viewed as a subring of R[x].

Ex (endomorphism ring). Let A be an abelian group and EndA be the set of group homomorphisms $f: A \to A$. Define addition in EndA by (f+g)(a) = f(a) + g(a), and the multiplication in EndA by (fg)(a) = f(g(a)). Then EndA is a ring with identity. The matrix ring is a special case of endomorphism ring.

Ex (external direct product). Let R_i ($i \in I$) be rings. Then

$$\prod_{i \in I} R_i = \{(a_i)_{i \in I} \mid a_i \in R_i \text{ for } i \in I\}$$

is a ring under the following operations:

$$(a_i)_{i \in I} + (b_i)_{i \in I} = (a_i + b_i)_{i \in I}, \qquad (a_i)_{i \in I} (b_i)_{i \in I} = (a_i b_i)_{i \in I}$$

Ex. Let A_1, \dots, A_n be ideals in a ring R such that

1.
$$A_1 + \cdots + A_n = R$$
 and

2. for each
$$k$$
 $(1 \le k \le n)$, $A_k \cap (A_1 + \cdots + A_{k-1} + A_{k+1} + \cdots + A_n) = 0$

Then there is a ring isomorphism $R \simeq A_1 \times \cdots \times A_n$.

The ring R is said to be the **internal direct product** of the ideals A_i , written as $R = \prod A_i$ or $R = A_1 \times \cdots \times A_n$. Note that each of the A_i is contained in R, which is slightly different from the external direct product.

(proof)

Ex (coproduct (direct sum)). The coproduct (direct sum) of R_i ($i \in I$) is a subring of the direct product of R_i ($i \in I$):

$$\coprod_{i \in I} R_i = \bigoplus_{i \in I} R_i = \{(a_i)_{i \in I} \mid a_i \in R_i \text{ for } i \in I, \text{ only finitely many } a_i \neq 0\}$$

Ex (group ring). If G is a multiplicative group and R is a ring, we define the group ring R(G), such that every element $\sum_{g \in G} r_g g$ of R(G) has only finitely many nonzero summands, and

- 1. 0g = 0 for all $g \in G$.
- 2. Given $r_i, s_j \in R$ and $g_i, h_j \in G$,

$$\sum_{i=1}^{n} r_i g_i + \sum_{i=1}^{n} s_i g_i = \sum_{i=1}^{n} (r_i + s_i) g_i$$

$$\left(\sum_{i=1}^{n} r_i g_i\right) \left(\sum_{j=1}^{m} s_j h_j\right) = \sum_{i=1}^{n} \sum_{j=1}^{m} (r_i s_j) (g_i h_j)$$

1.2 Subrings, Ideals, and Ring Homomorphisms

(III.1, III.2)

1.2.1 Subrings and Ideals

Def. Let R be a ring. Let S be a nonempty subset of R that is closed under +, -, and \cdot . Then S has a ring structure and is called a **subring** of R.

Def. A subring I of R is a **left ideal** provided

$$r \in R$$
 and $x \in I \implies rx \in I$.

I is an ideal if it is both a left and right ideal.

Ex. The center of a ring R is the set $C = \{c \in R \mid cr = rc \text{ for all } r \in R\}$ is a subring of R, but may not be an ideal of R. Think about the situation $R = \mathbb{C}^{2 \times 2}$ (exercise).

Ex. Consider the matrix ring $R = \mathbf{Z}^{2\times 2}$. Then

1.
$$I_1 = \begin{bmatrix} 2\mathbf{Z} & \mathbf{Z} \\ 2\mathbf{Z} & \mathbf{Z} \end{bmatrix}$$
 is a left ideal (but not a right ideal) of R ;

2.
$$I_2 = \begin{bmatrix} 2\mathbf{Z} & 2\mathbf{Z} \\ \mathbf{Z} & \mathbf{Z} \end{bmatrix}$$
 is a right ideal (but not a left ideal) of R ;

3.
$$I = (2\mathbf{Z})^{2\times 2} = \begin{bmatrix} 2\mathbf{Z} & 2\mathbf{Z} \\ 2\mathbf{Z} & 2\mathbf{Z} \end{bmatrix}$$
 is an ideal of R ;

4.
$$S = \begin{bmatrix} \mathbf{Z} & 0 \\ 0 & \mathbf{Z} \end{bmatrix}$$
 is a subring (but not an ideal) of R .

A ring R always contains the trivial ideal 0 and the ideal R itself. The other ideals of R are called **proper ideals**.

Thm 1.1. A nonempty set I of a ring R is a [left] ideal of R iff for all $a, b \in I$ and $r \in R$:

1.
$$a, b \in I \implies a - b \in I$$
; and

$$2. \ a \in I, \ r \in R \implies ra \in I.$$

Cor 1.2. Let R be a ring and each A_i a [left] ideal of R.

1. The intersection $\bigcap_{i \in I} A_i$ is a [left] ideal;

2. The sum

$$\sum_{i \in I} A_i = \{ a_1 + a_2 + \dots + a_n \mid n \in \mathbf{Z}^+, \ a_j \in \bigcup_{i \in I} A_i \ for \ j = 1, 2, \dots, n. \}$$

is a [left] ideal;

3. Let

$$A_1 A_2 \cdots A_n = \{ \sum_{j=1}^m a_{j1} a_{j2} \cdots a_{jn} \mid m \in \overline{\mathbf{Z}}^-, \ a_{jk} \in A_k, \ k = 1, 2, \cdots, n \}.$$

Then $A_1A_2\cdots A_n$ is also a [left] ideal.

Thm 1.3. If A, B, C, A_1, \dots, A_n are [left] ideals of a ring R, then

1.
$$(A+B)+C=A+(B+C);$$

2.
$$(AB)C = A(BC)$$
;

3.
$$B(A_1 + \cdots + A_n) = BA_1 + \cdots + BA_n$$
; and $(A_1 + \cdots + A_n)C = A_1C + \cdots + A_nC$.

Def. Let X be a subset of a ring R, let $\{A_i \mid i \in I\}$ be the family of all ideals in R which contain X. Then $\bigcap_{i \in I} A_i$ is called **the ideal generated by** X, denoted by (X). The element of X are called the **generators** of the ideal (X). If X has finite cardinality, then (X) is a finitely generated ideal. In particular, an ideal (a) generated by a single element $a \in R$ is called a principal ideal.

Thm 1.4. For
$$X \subseteq R$$
, we have $(X) = \sum_{a \in X} (a)$.

Thus it is important to describe the principal ideals.

Thm 1.5. Suppose R is a ring and $a \in R$.

1. The principal ideal (a) consists of all elements of the form

$$na + ra + as + \sum_{i=1}^{m} r_i as_i$$
, where $r, s, r_i, s_i \in R$, $m \in \mathbf{Z}^+$, $n \in \mathbf{Z}$.

2. If R has an identity, then

$$(a) = \left\{ \sum_{i=1}^{n} r_i a s_i \mid r_i, s_i \in \mathbf{R}, \ n \in \mathbf{Z}^+ \right\}$$

3. If a is in the center of R (e.g. R is a commutative ring), then

$$(a) = \{ na + ra \mid r \in R, \ n \in \mathbf{Z} \}$$

4. If R has an identity and a is in the center of R, then

$$(a) = aR = Ra$$

If I is an ideal of R, then the cosets

$$R/I = \{a + I \mid a \in R\}$$

has a well-defined **factor ring** structure by the following operations:

$$(a+I) + (b+I) = (a+b) + I$$

 $(a+I)(b+I) = ab+I$

Ex. If I is only a left ideal of R, can we define the factor ring R/I?

Ex. Let I be an ideal of R. If R is commutative or has an identity, then so is R/I. The converse is not true. For examples,

1.
$$R = \begin{bmatrix} \mathbf{Z} & \mathbf{Z} \\ 0 & \mathbf{Z} \end{bmatrix}, I = \begin{bmatrix} 0 & \mathbf{Z} \\ 0 & 0 \end{bmatrix}.$$

2. $R = 2\mathbf{Z} \text{ and } I = 6\mathbf{Z}.$

1.2.2 Homomorphisms

Def. A function $f: R \to S$ between two rings R and S is a ring homomorphism if f preserves the corresponding operations: for all $a, b \in R$,

$$f(a + b) = f(a) + f(b),$$
 $f(ab) = f(a)f(b).$

Different kinds of homomorphisms:

monomorphisminjective homomorphismepimorphismsurjective homomorphismisomorphismbijective homomorphism

automorphism isomorphism of a ring R to R itself

Let $f: R \to S$ be a homomorphism. Then

$$\operatorname{Ker} f = \{r \in R \mid f(r) = 0\}$$

$$\operatorname{Im} f = \{s \in S \mid s = f(r) \text{ for some } r \in R\}.$$

where Ker f is an ideal of R, and Im f is a subring of S.

Ideals and ring homomorphisms are closely related to each other. We have seen that Ker f is an ideal of R above. Conversely, given an ideal I of R, we have the **canonical epimorphism** (or projection)

$$\pi: R \to R/I$$
 defined by $\pi(r) = r + I$, such that $\operatorname{Ker} \pi = I$.

The following theorems and proofs are similar to those for the groups.

Thm 1.6 (First Isomorphism Theorem). If $f: R \to S$ is a ring homomorphism, then f induces a ring isomorphism $R/Kerf \simeq Im f$.

Thm 1.7. Let I and J be ideals of a ring R.

1. (Second Isomorphism Theorem) There is a ring isomorphism

$$I/(I \cap J) \simeq (I+J)/J$$
.

2. (Third Isomorphism Theorem) If $I \subset J$, then J/I is an ideal in R/I and there is a ring isomorphism

$$(R/I)/(J/I) \simeq R/J.$$

Thm 1.8. Let I be an ideal of R. There is a one-to-one correspondence between the set of all ideals of R which contains I and the set of all ideals of R/I, given by $J \mapsto J/I$. So every ideal in R/I is of the form J/I for $I \subset J \subset R$.

1.2.3 Prime Ideals and Maximal Ideals

Def. An ideal P in a ring R is a **prime ideal** if $P \neq R$ and for any ideals A, B in R

$$AB \subset P \implies A \subset P \text{ or } B \subset P$$

There are several equivalent characterizations of prime ideals (See Ex III.2.14). A very useful one is below

Thm 1.9. If P is an ideal in a ring R such that $P \neq R$ and for all $a, b \in R$

$$ab \in P \implies a \in P \quad or \quad b \in P$$
 (1.1)

then P is prime. Conversely if P is prime and R is commutative, then P satisfies condition (1.1).

(proof)

For commutative ring R, (1.1) is an equivalent condition for prime ideals.

Ex. The zero ideal of an integral domain is prime.

Ex. Let R be a commutative ring with identity $1_R \neq 0$. Then an ideal P is prime iff the quotient ring R/P is an integral domain.

Def. An [left] ideal M in a ring R is **maximal** if $M \neq R$ and for every [left] ideal N such that $M \subset N \subset R$, either M = N or N = R.

Thm 1.10. Let R be a ring with identity. Then every ideal in R is contained in a maximal ideal. Moreover, every maximal ideal M in R is prime.

(proof)

Ex. What happen if R has no identity. Consider $R = 2\mathbf{Z}$.

- 1. $M_1 = 4\mathbf{Z}$ is a maximal ideal, but M_1 is not a prime ideal.
- 2. $M_2 = 6\mathbf{Z}$ is a maximal ideal as well as a prime ideal. $2\mathbf{Z}/6\mathbf{Z} \simeq \mathbf{Z}_3$. However, the identity of $2\mathbf{Z}/6\mathbf{Z}$ is $4 + 6\mathbf{Z}$.

Ex. Let R be a commutative ring with identity $1_R \neq 0$. Then M is a maximal ideal of R iff R/M is a field. In particular, R is a field iff 0 is a maximal ideal in R.

1.2.4 Chinese Remainder Theorem

Let A be an ideal in a ring R and $a, b \in R$. Then a is **congruent** to b modulo A (denoted $a \equiv b \mod A$) if $a - b \in A$. In other words,

$$a \equiv b \mod A \iff a-b \in A \iff a+A=b+A$$

We have

$$a_1 \equiv a_2 \mod A, \quad b_1 \equiv b_2 \mod A \implies$$

 $a_1 + b_1 \equiv a_2 + b_2 \mod A, \quad a_1b_1 \equiv a_2b_2 \mod A.$

Thm 1.11 (Chinese Remainder Theorem). Let $A_1, \dots A_n$ be ideals in a ring R such that

- 1. $R^2 + A_i = R$ for all i and
- 2. $A_i + A_j = R$ for all $i \neq j$.

Then for any $b_1, \dots, b_n \in R$, there exists $b \in R$ such that

$$b \equiv b_k \mod A_k \qquad (k = 1, 2, \dots, n).$$

Furthermore b is uniquely determined up to congruence modulo the ideal $A_1 \cap A_2 \cap \cdots \cap A_n$.

Remark. If R has identity, then $R^2 = R$, and $R^2 + A_i = R$ always holds.

Cor 1.12. Let m_1, \dots, m_n , be positive integers such that $(m_i, m_j) = 1$ for $i \neq j$. If b_1, \dots, b_n are any integers, then the system of congruences

$$x \equiv b_1 \mod m_1$$

 $x \equiv b_2 \mod m_2$
 \vdots
 $x \equiv b_n \mod m_n$

has an integral solution that is uniquely determined modulo $m = m_1 \cdots m_n$.

Proof of the theorem: We proceed in three steps.

1. Claim: $R = A_1 + (A_2 \cap \cdots \cap A_n)$. Clearly $R = A_1 + A_2$. Suppose that $R = A_1 + (A_2 \cap \cdots \cap A_{k-1})$. Then

$$R = A_1 + R^2$$

$$= A_1 + (A_1 + A_k)[A_1 + (A_2 \cap \cdots \cap A_{k-1})]$$

$$\subset A_1 + A_k(A_2 \cap \cdots \cap A_{k-1})$$

$$\subset A_1 + (A_2 \cap \cdots \cap A_k) \subset R$$

So $R = A_1 + (A_2 \cap \cdots \cap A_k)$. By induction, $R = A_1 + (A_2 \cap \cdots \cap A_n)$.

- 2. Similarly, $R = A_k + (\bigcap_{i \neq k} A_i)$ for $k = 1, \dots, n$. For b_k in the theorem, write $b_k = a_k + r_k$ for $a_k \in A_k$ and $r_k \in (\bigcap_{i \neq k} A_i)$.
- 3. Denote $r = r_1 + \cdots + r_n$. By $r_i \in A_k$ for $i \neq k$, we can verify that $r \equiv r_k \mod A_k$. The rest is clear.

1.3 Factorization in Integral Domain

(III.3) The ring R in this section is an *integral domain*. Some results here may be generalized to commutative rings.

Def. $a \in R \setminus \{0\}$ is said to divide $b \in R$ (notation: $a \mid b$) if ax = b for some $x \in R$. $a, b \in R \setminus \{0\}$ are associate if $a \mid b$ and $b \mid a$.

Prop 1.13. *Let* $a, b, u, r \in R$.

- 1. $a \mid b \iff (b) \subset (a)$.
- 2. a and b are associate \iff $(a) = (b) \iff a = br \text{ for a unit } r \in R.$
- 3. u is a unit $\iff u \mid r$ for all $r \in R \iff (u) = R$.

(sketch of proof)

Def. Suppose $p \in R \setminus \{0\}$ is not a unit. Then p is irreducible if $p = ab \implies a$ or b is a unit prime if $p \mid ab \implies p \mid a$ or $p \mid b$.

Thm 1.14. R an integral domain. $p \in R \setminus \{0\}$.

- 1. p is prime \iff $(p) \neq (0)$ is prime;
- 2. p is irreducible \iff (p) is maximal in the set S of all proper principal ideals of R.
- 3. Every prime element of R is irreducible.

Remark. An irreducible element in an integral domain may not be a prime. See Ex III.3.3 (exercise).

(sketch of proof of thm)

Def. An integral domain R is a unique factorization domain if every nonzero nonunit element $a \in R$ can be "uniquely" expressed as $a = c_1 \cdots c_n$ with all c_i irreducible.

The uniqueness in the above definition means that: if $a = c_1 \cdots c_n = d_1 \cdots d_m$, then n = m, and there is a permutation σ of $\{1, \dots, n\}$ such that c_i and $d_{\sigma(i)}$ are associate for every i.

Thm 1.15. If R is a unique factorization domain, then p is prime if and only if p is irreducible.

(proof)

An integral domain R is a **principal ideal domain** if every ideal of R is a principal ideal.

 $\mathbf{Ex.}$ NOT principal ideal domains:

- 1. $\mathbf{Z}[x]$;
- 2. F[x,y] where F is a field.

Thm 1.16. Every principal ideal domain is a unique factorization domain.

(Proof is skipped. See Theorem III.3.7.)

Remark. The converse is false. $\mathbf{Z}[x]$ is a unique factorization domain, but not a principal ideal domain.

Def. An integral domain R is a Euclidean domain if there is a function $\varphi: R - \{0\} \longrightarrow \mathbf{N}$ such that:

- 1. $\varphi(a) \leq \varphi(ab)$ for $a, b \in R \{0\}$.
- 2. if $a, b \in R$ and $b \neq 0$, then there exist $q, r \in R$ such that a = qb + r, where either r = 0 or $\varphi(r) < \varphi(b)$.

Ex. Examples of Euclidean domains (which are also principal ideal domains):

- 1. The ring **Z** with $\varphi(x) = |x|$ is a Euclidean domain.
- 2. A field F with $\varphi(x) = 1$ for all $x \in F \{0\}$.
- 3. F[x] where F is a field, with $\varphi(f(x)) = \deg f(x)$ for $f(x) \in F[x] \{0\}$.
- 4. $\mathbf{Z}[i]$ with $\varphi(a + b\mathbf{i}) = a^2 + b^2$.

Thm 1.17. Every Euclidean domain is a principal integral domain.

Proof: Let $I \subseteq R$. If I = (0) then it is principal. Otherwise, choose $x \in I \setminus \{0\}$ such that $\varphi(x) \in \mathbf{N}$ is minimal. Then show that I = (x).

Def. Let X be a nonempty subset of an integral domain R. An element $d \in R$ is a greatest common divisor (gcd) of X provided:

- 1. $d \mid a \text{ for all } a \in X$.
- 2. $c \mid a \text{ for all } a \in X \Longrightarrow c \mid d$.

If 1_R is the greatest common divisor of $a_1, \dots, a_n \in R$, then a_1, \dots, a_n are said to be **relative prime**.

Prop 1.18. Let R be an integral domain.

- 1. The greatest common divisor of $X \subset R$, if exists, is unique up to association (i.e. up to a multiple of units).
- 2. $d \in R$ is a greatest common divisor of $\{a_1, \dots, a_n\}$ such that $d = r_1a_1 + \dots + r_na_n$ for $r_i \in R$ if and only if $(d) = (a_1) + \dots + (a_n)$.
- 3. If R is a unique factorization domain, then there exists a greatest common divisor for every nonempty $X \subset R$.
- 4. If R is a principal ideal domain, then a greatest common divisor of $X \subset R$ exists and is of the form $r_1a_1 + \cdots + r_na_n$ for some $a_i \in X$ and $r_i \in R$.

Proof. 1. Easy

- 2. Interpret the definition of gcd in terms of ideal inclusion.
- 3. Easy
- 4. By 2.

1.4 Ring of Quotients and Localization

In this section, R denotes a *commutative ring*. Sometimes we require that R has identity.

Ex. Consider the integral domain **Z**. The field $\mathbf{Q} = \{a/b \mid a, b \in \mathbf{Z}, b \neq 0\}$ can be viewed as constructed from **Z** by quotients. In **Q**, we have a/b = c/d iff ad - bc = 0.

We can define quotients in the other rings.

Def. A nonempty set S of a ring R is multiplicative if

$$a, b \in S \Longrightarrow ab \in S$$
.

Lem 1.19. Let S be a multiplicative subset of a commutative ring R. The relation \sim defined on $R \times S$ by

$$(r,s) \sim (r',s') \iff s_1(rs'-r's) = 0 \text{ for some } s_1 \in S$$

is an equivalent relation.

Again, let r/s denote the equivalent class of (r, s).

Thm 1.20. Let S be a multiplicative subset of a commutative ring R. Let $S^{-1}R$ be the set of equivalent classes of $R \times S$ defined in Lemma 1.19. Then $S^{-1}R$ is a commutative ring with identity, where + and \cdot are defined by

$$r/s + r'/s' = (rs' + r's)/ss'$$
 and $(r/s)(r'/s') = (rr')/(ss')$.

The ring $S^{-1}R$ is the ring of quotients or quotient ring of R by S.

Ex. If R is an integral domain, and S consists of all nonzero elements of R, then $S^{-1}R$ is a field (the field of quotients of R) where R is embedded as a subring. Consider the situations:

1.
$$R = \mathbf{Z}$$
.

2.
$$R = \mathbf{R}[x]$$
.

Ex. If all elements of S are units, then $S^{-1}R \simeq R$.

Ex. S is a multiplicative set including 0. What is $S^{-1}R$?

Ex.
$$R = \mathbf{Z}, S = 3\mathbf{Z}^{+}, \text{ what is } S^{-1}R$$
?

Thm 1.21. Let S be a multiplicative subset of R.

- 1. The map $\varphi_S: R \to S^{-1}R$ given by $r \mapsto rt/t$ (for any $t \in S$) is a well-defined homomorphism such that $\varphi_S(t)$ is a unit in $S^{-1}R$ for every $t \in S$.
- 2. If $0 \notin S$ and S contains no zero divisors, then φ_S is a monomorphism.
- 3. If S consists of units, then φ_S is an isomorphism.

(sketch of proof)

Thm 1.22. So a mult subset of comm. ring R. To a comm. ring with identity. If a ring homom. $f: R \to T$ satisfies that f(s) is a unit in T for all $s \in S$, then there exists a unique ring homom. $\bar{f}: S^{-1}R \to T$ such that $\bar{f} \circ \varphi_S = f$. The ring $S^{-1}R$ is completely determined by this property.

Prop 1.23. S a mult subset of comm. ring R.

- 1. If I is an ideal of R, then $S^{-1}I$ is an ideal of $S^{-1}R$. Conversely, every proper ideal of $S^{-1}R$ is of the form $S^{-1}I$ for $I \triangleleft R$ and $I \cap S = \emptyset$.
- 2. $S^{-1}I = S^{-1}R$ if and only if $S \cap I \neq \emptyset$.
- 3. If J is another ideal of R, then (exercise)

$$S^{-1}(I+J) = S^{-1}I + S^{-1}J$$

$$S^{-1}(IJ) = (S^{-1}I)(S^{-1}J)$$

$$S^{-1}(I \cap J) = S^{-1}I \cap S^{-1}J$$

4. If P is a prime ideal of R and $S \cap P = \emptyset$, then $S^{-1}P$ is a prime ideal in $S^{-1}R$. If Q is another prime ideal of R with $S \cap Q = \emptyset$ and $P \neq Q$, then $S^{-1}P \neq S^{-1}Q$.

(proof of 4.)

Let P be a prime ideal of R. Then S = R - P is a multiplicative subset of R. The ring $S^{-1}R$ (= R_P) is called the **localization of** R by P. If I is an ideal in R, then $S^{-1}I$ is denoted by I_P .

Thm 1.24. Let P be a prime ideal of R

1. There is a one-to-one correspondence between the set of prime ideals of R which are contained in P and the set of prime ideals of R_P , given by $I \mapsto I_P$.

2. The ideal P_P is the unique maximal ideal of R_P .

Def. A local ring is a commutative ring with identity which has a unique maximal ideal.

Ex. If p is prime and $n \ge 1$, then \mathbb{Z}_{p^n} is a local ring with unique maximal ideal (p).

Prop 1.25. If R is a local ring with unique maximal ideal M, then M consists of all nonunits of R. Conversely, if all nonunits of a commutative ring R with identity form an ideal, then R is a local ring.

1.5 Rings of Polynomials and Factorizations

(III.5, III.6) In this section, D is an integral domain; E is an integer domain that contains D; F denotes the quotient field of D.

1.5.1 Rings of Polynomials and Formal Power Series

• Define the **ring of polynomials** over *D*:

$$D[x] = \{a_0 + a_1x + \dots + a_nx^n \mid a_i \in D, \ n \in \mathbb{N}\}\$$

with + and \cdot defined in the usual way.

Let $f = a_n x^n + \dots + a_1 x + a_0 \in D[x]$ with $a_n \neq 0$:

coefficients: all $a_i \in D$

leading coefficient: a_n constant term: a_0 indeterminate:x

degree of f: $\deg f = n$

• The ring of polynomials in n indeterminates over D is $D[x_1, \dots, x_n] := (D[x_1, \dots, x_{n-1}])[x_n]$. It consists of

$$f = \sum_{(k_1, \dots, k_n) \in \mathbf{N}^n} a_{k_1, \dots, k_n} x_1^{k_1} \dots x_n^{k_n} = \sum_{I \in \mathbf{N}^n, |I| \le m} a_I \mathbf{x}^I,$$

where $m \in \mathbf{N}$, $\mathbf{x} = (x_1, \dots, x_n)$, $I = (k_1, \dots, k_n) \in \mathbf{N}^n$, and

$$|I| := k_1 + \dots + k_n, \qquad a_I := a_{k_1,\dots,k_n}, \qquad \mathbf{x}^I := x_1^{k_1} \dots x_n^{k_n}.$$

The elements a_I are **coefficients**. The elements x_1, \dots, x_n are **indeterminates**. A polynomial of the form $ax_1^{k_1} \cdots x_n^{k_n}$ is called a **monomial**. We can define **the degree of a polynomial**, and **homogeneous polynomial of degree** k.

Prop 1.26. Let D be an int dom and $f, g \in D[x_1, \dots, x_n]$.

- 1. $\deg(f+g) \le \max(\deg f, \deg g)$.
- 2. $\deg(fg) = \deg f + \deg g$.

(Proof is skipped)

Def. Let D and E be int dom with $D \subseteq E$. An element $(c_1, \dots, c_n) \in E^n$ is said to be a **root** or a **zero** of $f \in D[x_1, \dots, x_n]$ if $f(c_1, \dots, c_n) = 0$.

• The ring of formal power series over the ring D is

$$D[[x]] = \left\{ \sum_{i=0}^{\infty} a_i x^i \mid a_i \in D \right\}.$$

It forms a ring under the usual + and \cdot .

1.5.2 Factorizations over an integer domain

Thm 1.27 (Division Algorithm). Let $f, g \in D[x]$. If the leading coefficient of g is a unit in D, then there exist unique polynomials $q, r \in D[x]$ such that

$$f = qg + r$$
 and $\deg r < \deg g$.

Cor 1.28 (Remainder Theorem). Let $f(x) = \sum_{i=0}^{n} a_i x^i \in D[x]$. For any $c \in D$ there exists a unique $q(x) \in D[x]$ such that

$$f(x) = q(x)(x - c) + f(c).$$

In particular, $c \in D$ is a root of f(x) if and only if (x - c) divides f(x).

Prop 1.29. If $f \in D[x]$ has degree n, then f has at most n distinct roots in any integer domain $E \supseteq D$.

(sketch of proof)

Def. The formal derivative of $f = \sum_{k=0}^{n} a_k x^k \in D[x]$ is

$$f' = \sum_{k=0}^{n} k a_k x^{k-1} \in D[x].$$

It satisfies the usual derivative properties (sum/product/quotient/chain rules, etc.). For example, $c \in D$ is a multiple root of f iff f(c) = 0 and f'(c) = 0.

1.5.3 Factorizations over a UFD

 \star From now on, we consider polynomial rings over a unique factorization domain (UFD). Let D be a UFD with quotient field F.

Def. Let $f = \sum_{i=0}^{n} a_i x^i \in D[x]$. Every element in $gcd(a_0, \dots, a_n)$ is called a **content** of f, denoted by C(f). If C(f) is a unit in D, then f is said to be **primitive**.

- Every polynomial $f \in D[x]$ can be written as $f = C(f)f_1$ with $f_1 \in D[x]$ primitive.
- C(fg) = C(f)C(g) for $f, g \in D[x]$.

We write $a \stackrel{D}{\sim} b$ to denote that a and b are associate in D.

Prop 1.30. Let D be a UFD with quotient field F. Let f and g be primitive polynomials in D[x].

- 1. $f \stackrel{D[x]}{\sim} g$ if and only if $f \stackrel{F[x]}{\sim} g$.
- 2. f is irreducible in D[x] if and only if f is irreducible in F[x].

Proof.

- 1. If $f \overset{F[x]}{\sim} g$, then f = gu for a unit $u \in F[x]$. Then $u \in F$, say u = c/d for $c, d \in D$. Then df = cg. So $dC(f) \overset{D}{\sim} C(df) \overset{D}{\sim} C(cg) \overset{D}{\sim} cC(g)$. Then $c \overset{D}{\sim} d$ since f and g are primitive. So u = c/d is a unit in D and $f \overset{D[x]}{\sim} g$. The converse is trivial.
- 2. Suppose f is irreducible in D[x] and f = gh with $g, h \in F[x]$ and $\deg g \geq 1$, $\deg h \geq 1$. We can write $g = (a/b)g_0$ and $h = (c/d)h_0$ with $a, b, c, d \in D$, $g_0, h_0 \in D[x]$ primitive. Then $bdf = acg_0h_0$ in D[x]. Then $bd \stackrel{D}{\sim} C(bdf) \stackrel{D}{\sim} C(acg_0h_0) \stackrel{D}{\sim} ac$. Then $f \stackrel{D[x]}{\sim} g_0h_0$, a contradiction!

Conversely, if f is irreducible in F[x] and f = gh with $g, h \in D[x]$, then one of g and h, say g, is a unit in F[x]. So g is a constant. Then C(f) = gC(h). Since f is primitive, g must be a unit in D. Hence f is irreducible in D[x].

Note the F[x] for a field F is a Euclid dom/PID/UFD. We use it to prove the following theorem.

Thm 1.31. If D is a UFD, then $D[x_1, \dots, x_n]$ is a UFD.

Proof. It suffices to prove that D is a UFD implies that D[x] is a UFD. Let F be the quotient field of D.

Existence: Every $f \in D[x]$ can be written as $f = C(f)f_1$, where $f_1 \in D[x]$ is primitive. C(f) = 1 or $C(f) = c_1 \cdots c_m$, with each c_i irreducible in D and hence irreducible in D[x]. If deg $f_1 > 0$, we write $f_1 = p_1^* p_2^* \cdots p_n^*$ with each p_i^* irreducible in F[x] (a UFD); write $p_i^* = (a_i/b_i)p_i$ with $a_i, b_i \in D$, $p_i \in D[x]$ is primitive in D[x] and irreducible in F[x] (whence p_i is irreducible in D[x]); write $a = a_1 \cdots a_n$ and $b = b_1 \cdots b_n$. Then $bf_1 = ap_1 \cdots p_n$. Since f_1 and f_1, \dots, f_n are primitive, f_n b. Then f_n is a unit in f_n and f_n and f_n is a product of irreducible elements in f_n .

Uniqueness: Suppose $f \in D[x]$ has two decompositions

$$f = c_1 \cdots c_m p_1 \cdots p_n = d_1 \cdots d_r q_1 \cdots q_s$$

where $c_i, d_j \in D$ are irreducible, and $p_k, q_l \in D[x]$ have positive degree and irreducible. Then $c_1 \cdots c_m \stackrel{D}{\sim} d_1 \cdots d_r$ as they are contents of f. Then $p_1 \cdots p_n \stackrel{F[x]}{\sim} q_1 \cdots q_s$. By the uniqueness of decompositions in D and F[x], we get the uniqueness of decomposition of f.

Thm 1.32 (Eisenstein's Criterion). Let D be a UFD with quotient field F. If $f = \sum_{i=0}^{n} a_i x^i \in D[x]$, deg $f \geq 1$, and p is irreducible in D such that

$$p \nmid a_n;$$
 $p \mid a_i \text{ for } i = 0, 1, \dots, n-1;$ $p^2 \nmid a_0,$

then f is irreducible in F[x]. If f is primitive, then f is irreducible in D[x].

Proof. $f = C(f)f_1$ with f_1 primitive in D[x]. The coefficients of $f_1 = \sum_{k=0}^{n} a_k^* x^k$ satisfy that:

$$p \nmid a_n^*;$$
 $p \mid a_i^* \quad i = 0, 1, \dots, n-1;$ $p^2 \nmid a_0^*.$

It suffices to show that f_1 is irreducible in D[x]. Suppose on the contrary, $f_1 = gh$ with $g = \sum_{i=0}^r b_i x^i \in D[x]$, $\deg g = r \ge 1$; and $h = \sum_{j=0}^s c_j x^j \in D[x]$,

deg $h = s \ge 1$. The irreducible element p is prime since D is a UFD. $p \mid a_0^* = b_0 c_0$. So $p \mid b_0$ or $p \mid c_0$, say $p \mid b_0$. Then $p \nmid c_0$ since $p^2 \nmid a_0^*$. Some coefficient b_ℓ of g is not divisible by p. Suppose ℓ is the integer such that

$$p \mid b_i$$
 for $i < \ell$ and $p \nmid b_\ell$.

Then $\ell \leq r < n$ and $p \mid a_{\ell}^* = b_0 c_{\ell} + b_1 c_{\ell-1} + \cdots + b_{\ell} c_0$. So $p \mid b_{\ell} c_0$, which is a contradiction since p is prime, $p \nmid b_{\ell}$ and $p \nmid c_0$. Therefore, f_1 must be irreducible in D[x].

Ex. Use Eisenstein's Criterion to show that:

- 1. $f = 2x^5 6x^3 + 9x^2 15 \in \mathbf{Z}[x]$ is irreducible in $\mathbf{Z}[x]$.
- 2. Suppose R is a UFD. Then $f = y^3 + x^2y^2 + x^3y + x \in R[x,y]$ is irreducible in R[x,y].
- 3. $x^n p$ and $x^n + p$ are irreducible if $p \in D$ is irreducible.
- 4. Let $f_n(x) = (x^n 1)/(x 1) = x^{n-1} + x^{n-2} + \dots + x + 1$. Then $f_n(x)$ is irreducible in $\mathbf{Q}[x]$ (and $\mathbf{Z}[x]$) if and only if n is prime. (Hint: When n is prime, consider $g_n(x) = f_n(x + 1)$).