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Abstract. We report on a new statistical test for detecting density dependence in uni- 
variate time series observations of population abundances. The test is a likelihood ratio 
test based on a discrete time stochastic logistic model. The null hypothesis is that the 
population is undergoing stochastic exponential growth. stochastic exponential decline, or 
random walk. The distribution of the test statistic under both the null and alternate hy- 
potheses is obtained through parametric bootstrapping. We document the power of the 
test with extensive simulations and show how some previous tests in the literature for 
density dependence suffer from either excessive Type I or excessive Type I1 error. The new 
test appears robust against sampling or measurement error in the observations. In fact, 
under certain types of error the power of the new test is actually increased. Example analyses 
of elk (Cervus elaphus) and grizzly bear (CTrsus arctos horrihilis) data sets are provided. The 
model implies that density-dependent populations d o  not have a point equilibrium. but 
rather reach a stochastic equilibrium (stationary distribution of population abundance). 
The model and associated statistical methods have potentially important applications in 
conservation biology. 

Key words: bootstrapping; conservation hrolog~l;density dependence; elk; equilibrium; grizzlj~ hear; 
likelihood ratio; logistic model; nonlinear autoregressive model; population regulation; statistical power; 
stochastic dlference equation; stochast~c population model; time series analvsis. 
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Whether or not populations in nature tend to have den Boer 1990, 199 I, Solow 1990, 199 1 ,  Turchin 1990, 

growth rates regulated by their own densities has long Turchin et al. 199 1, Crowley 1992, Turchln and Taylor 

been a key but frustrating problem of ecological re- 1992). One conceptual argument, exemplified by den 

search (The Biological Laboratory 1957, McLaren 197 1. Boer (1 99 l) ,  asserts that if density dependence is to be 
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One group of studies has used a statistical model of 
population growth with a density dependence term 
proportional to the logarithm of population abundance 
(Reddingius 197 1, Bulmer 1975, Gaston and Lawton 
1987, den Boer and Reddingius 1989, Reddingius and 
den Boer 1989, den Boer 1990, Vickery and Nudds 
199 1, Crowley 1992). While different particular meth- 
ods for testing whether the density dependence term 
should be included in this model have different powers 
(Pollard et al. 1987. Vickery and Nudds 1991), these 
analyses frequently suggested that density dependence 
is not as prevalent as expected by ecological theory. 
The related concepts of "stabilization" (den Boer 1968, 
1990) and "density vagueness" (Strong 19860, h) have 
been suggested to account for such findings; the con- 
cepts essentially take population growth to be density 
independent (but noisy) over a wide range of densities, 
with density dependent regulation occurring more or 
less sharply at very high densities. 

However. in contrast to the above studies, Woiwod 
and Hanski (1992) and Holyoak and Lawton (1992) 
detected frequent density dependence using tests based 
on the same logarithmic density dependence model 
(among other tests). Woiwod and Hanski (1 992) ana- 
lyzed thousands of insect data sets, many of which 
exceeded 20 observations in length; Holyoak and Law- 
ton (1992) treated 32 insect data sets of 8 or 12 ob- 
servations. In these studies. longer time series showed 
increased prevalence of density dependence. Earlier re- 
sults of Hassell et al. (1989) and Solow and Steele (1990) 
had also highlighted the importance of sample size to 
the statistical power of density dependence tests. 

Another set of studies employed a model with a 
density dependence term proportional to population 
abundance (Turchin 1990, Berryman 199 1a.  Turchin 
et al. 199 1, Turchin and Taylor 1992). Woiwod and 
Hanski (1992) and Holyoak and Lawton (1992) used 
the model as well. These studies found widespread 
density dependence, sometimes in the form of delayed 
regulation (second order lags: see Turchin 1990). The 
statistical methods used to test whether the density 
dependence term(s) should be included in the model 
were based on standard results from ordinary regres- 
sion analysis. Generalization of these analyses to mul- 
tiple species systems has been reported (Berryman 
199 1 b). 

Still other analyses have been based on various sta- 
tistical properties of random walks (Vickery and Nudds 
1984. den Boer 199 1, Crowley 1992). The studies re- 
garded a random walk model as the null hypothesis to 
be rejected by data according to some criterion. While 
Pollard et al. (1987) suggested that an exponential 
growth model (containing the random walk model as 
a special case) makes a more biologically interesting 
null hypothesis, the possibility that real data sets often 
cannot be distinguished from random walk trajectories 
remains unsettling to density dependence proponents. 
Indeed. den Boer (199 1) concludes that Nicholson's 
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(1933) hypothesis that populations "exist in a state of 
balance because densities fluctuate about a relatively 
stable norm" is not supported by random walk com- 
parisons or other statistical tests. Though den Boer 
(1991) does caution that these analyses do  not mean 
that populations obey random walk models, his results 
should inspire some rereadings of Birch's (1957) and 
Andrewartha's (1 957) earlier density independence ar- 
guments. 

In this paper, we introduce a new test for density 
dependence in time series data of population abun- 
dances. We propose that a discrete time stochastic lo- 
gistic model used by Turchin (1990) and Berryman 
(1 99 l a )  can serve as a useful and descriptive model 
for such testing in a variety of ecological situations. 
Statistical inference methods for this model, however. 
have not been well understood in the past. We develop 
parameter estimation methods and hypothesis testing 
methods for the model and focus on a likelihood ratio 
hypothesis test of density-independent vs. density-de- 
pendent population growth. Because the distribution 
of the test statistic is intractable, we show how its crit- 
ical values can be estimated with a parametric boot- 
strapping method. The power properties of this new 
test are documented here with extensive simulations. 
We illustrate the use of the test with examples. The 
results of past empirical studies are likely influenced 
by the statistical testing methods used. In particular, 
we show that the randomization test of Pollard et al. 
(1987) has low power (excessive Type I1 error) com- 
pared to the new test. Also. we find that the regression 
tests of Turchin (1 990) and Berryman (1 99 l a )  suffer 
from inflated size (excessive Type I error). The likeli- 
hood ratio test proposed here. by contrast, is a size 
0.05 test and represents the practical limits of power 
that can be attained for the stochastic logistic growth 
model. We discuss the effects of sampling variability, 
the ecological interpretation of density dependence 
testing. the concept of a stochastic equilibrium, and 
the potential use of the new test in population viability 
analysis. 

Let N, represent population abundance (as censused, 
estimated. or indexed) at  time t , where t = 0. 1, 2, . . . . 
The model we present relates N,, , to N,: 

Here a and h are constants, u is a positive constant, 
and aZ, is a random shock to the population growth 
rate. In thls paper. we are mostly concerned w ~ t h  values 
of b such that b 5 0. We assume that Z, has a normal 
distribut~on w ~ t h  a mean of 0 and a vanance of 1 [we 
wrlte 2, - normal(0, I)]. and that Z , ,  Z , ,  2,. . . . are 
uncorrelated. The model lnvolves two essent~al Ideas. 
First, the per-unit-abundance growth rate 1s defined In 
dlscrete time as In N, ,  , - In N,, analogous to ( l l n )  dn/ 
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dt = d In n/dt in continuous time. Second, that rate so 
defined is taken to be a linear function of N, plus noise. 

The constant b is the slope of the linear function. If 
b = 0, the per-unit-abundance growth rate does not 
depend on N,. When b < 0. the per-unit-abundance 
growth rate decreases as N, becomes larger. An increas- 
ing per-unit-abundance growth rate, or Allee effect. 
results when b > 0 (Dennis 1 9 8 9 ~ ) .  

The type of variability inherent in the model (Eq. 1) 
is "environmental" as opposed to "demographic." 
Models with demographic variability become essen- 
tially deterministic as population size becomes large 
(see discussion by Dennis et al. 199 1). A population 
governed by Eq. I, however, fluctuates at  large as well 
as small sizes. The distinctions between environmental 
and demographic variability have ramifications in con- 
servation biology (Leigh 198 1 ,  Shaffer 198 1, Goodman 
1987, Simberloff 1988, Dennis et al. 1991. Wissel and 
Stocker 199 1). 

The population abundances No. N,. N,, . . . are not 
independent under this model. even though the ran- 
dom shocks (Z,) are independent. As we show later in 
this paper, failure to account for the dependence among 
the N, values is the source of flaws in some previous 
statistical tests for density dependence. The stochastic 
process N, defined by Eq. 1 is a Markov process: given 
that the population has attained some particular size 
n, at time t, the future distribution of population sizes 
depends on n,, but not on past sizes. 

The Markov property is a fairly general assumption 
applicable in many ecological situations. The deter- 
ministic analogue of the Markov property is simply 
that population abundance can be described by a first- 
order difference equation. Even in populations with 
overlapping generations or age structure, some index 
of population abundance can behave as if governed by 
a first-order difference equation. For example, Livdahl 
and Sugihara (1 984) and Barlow (1 992) document sys- 
tems in which complex, nonlinear life histories give 
rise to simple linear dependence of per-unit-abundance 
growth rate on abundance. Also. Cushing (1989) has 
provided a theoretical justification of how a simple 
nonlinear difference equation can emerge from a pop- 
ulation projection matrix model (such as a Leslie ma- 
trix) in which there is nonlinear dependence of de- 
mographic rates on population abundance. We discuss 
later the evaluation of the model for a given data set 
by residual analysis and by testing for second-order 
lags (see H~pothesis testing and Discussion). 

We point out that the mean population abundance 
at time t + 1 under the model is not given by Eq. 1 
with u = 0. Because E[exp(uZ,)] = exp(u2/2) and be- 

time logistic model that has been analyzed extensively 
in population ecology (May 1976): 

n,, , = n,exp(r + bn,). (3) 

This model is known also as a Ricker equation from 
its similarity to the Ricker stock-recruitment relation- 
ship in fisheries (Ricker 1954). The linear form r + hn, 
is a simple way of representing density dependent feed- 
back in the per-unit-abundance growth rate (as defined 

by In n,, , - In n,). The deterministic model has a 
positive point equilibrium at 

ti = -r/b, (4) 

provided b < 0. 
Eq. 3 may seem an overly simplified representation 

of the complex processes of density dependence in nat- 
ural populations. However, the linear relationship r + 
hn, can be regarded as a Taylor series approximation 
near 2 of a more biologically detailed rate function 
(Dennis and Patil 1984, Dennis and Costantino 1988). 
The stability properties of ti and the dynamic behaviors 
of the deterministic model up to and including chaos 
are well known (May 1976). The growth model defined 
by Eq. 1 is a stochastic generalization of Eq. 3 and can 
be regarded as a type of stochastic, discrete time logistic 
model. 

This stochastic logistic model becomes a first-order 
nonlinear autoregression model when transformed to 
a logarithmic scale. By letting X; = In N,. we obtain 
the following time series model from Eq. 1: 

.Y,_, = X; + a + hP1 + uZ,. (5) 

Transforming the model to a logarithmic scale has 
three main advantages. First. theoretical statistical 
knowledge about such nonlinear autoregressive models 
has increased in recent years (Tong 1990). Use of Eq. 
5 provides connections between ecological time series 
data, mathematical population modeling, and estab- 
lished results in mathematical statistics. Second, valid 
point estimates (but not confidence intervals or hy- 
pothesis tests) of the parameters can be obtained with 
ordinary linear regression packages (see Parameter es-
timation). Third, for some parameter values, one can 
obtain a diffusion process approximation to .Y,. Such 
an approximation provides simple expressions for long- 
run statistical properties of X,,including the stationary 
distribution and mean first-passage times (see Discus- 
sion). 

The model can be altered to include second- or high- 
er order lags. The model would take the form 

N,,, = N,exp(a + b , N , +  b , N , ,  + . . .  

cause of the Markov property, the mean population 
abundance at time t + 1 given N, = n, is 

,,+ h,,,'Y+ I + UZ,) (6) 

for incorporating time lags up to order m. Using this 
model. Turchin ( 1990) and Turchin et al. (1 99 1) have 

E(N,+,  IN, = n,) = tz,exp(r + bn,). (2) argued for the prevalence of second-order lags in eco- 
Here r = a + (u2/2). logical populations. We make some preliminary rec- 

A deterministic analogue to Eq. 2 is a type of discrete ommendations in this paper (see Discussion) about how 
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testing for second-order lags might be accomplished. 
A full account of the statistical properties of Eq. 6 and 
of statistical inference methods for the model must be 
deferred to a future paper. 

An alternative first-order population model was in- 
troduced by Reddingius (1 97 1): 

Royama (1981) modified this model to  incorporate 
higher order time lags. On a logarithmic scale, Eq. 7 
becomes 

where, as before, X., = In ,V,. A statistical motivation 
for use of this model is that it can be written in the 
form of a linear, first-order autoregressive model 

(AR( 1)): 

A',, , - jI = B ( x ;  - jI) + a z , .  (9) 

with j~= - a l b  and p = 1 + b. The AR(1) model has 
well-known statistical properties and  established, 
packaged inference procedures. Written in the form of 
Eq. 7, the AR(1) model is seen to be a type of discrete 
time. stochastic Gompertz model [the Gompertz growth 
equation is (l/n)dn/dt = a + b In n]. While the statis- 
tical convenience of this model is a desirable quality, 
its biological postulate is that growth rate depends, if 
a t  all, only logarithmically on population density. By 
contrast, the stochastic logistic model (Eq. I) structur- 
ally allows for stronger density dependence. 

Computer-generating a time series from the sto-
chastic logistic model using Eq. 5 is a simple procedure. 
Given numerical values of a ,  b, and a2,  and starting at  
a fixed value .Yo = x,, one can easily calculate X I ,  X,, 
. . . recursively with the help of a routine for generating 
standard normal random variables. The simplicity of 
generating trajectories from the hypothesized stochas- 
tic mechanism underlying the data turns out to  be a 
key for convenient and powerful statistical inferences 
(see Pararneter estimation and Hypothesis testing). 

Distinguishing three cases of the model (Eq. 5) is 
important to density dependence testing. The cases form 
a series of three nested hypotheses. The simplest is 
Model 0: 

If,: a = 0, b = 0. (1 0) 

Model 0 defines X, as a discrete time Brownian motion 
process (or Wiener process) with zero drift (a = 0). This 
is the classic "random walk" model; X, has a normal 
distribution centered at  s, with a variance of a2t.  N o  
feedback of population density to  the growth rate takes 
place (b = 0). 

Model I is 

Model I also defines X, as a discrete time Brownian 
motion process. but this time with a positive o r  neg- 
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ative drift parameter (a i0). Under Model 1. X; has 
a normal distribution with a mean of .xu + a t  and a 
variance of o.'t. Model 1 in the original population 
abundance scale (Eq. I) is a type of stochastic expo- 
nential growth or  decay model. It is identical to  the 
model described by Dennis et al. (1 99 1) for estimating 
extinction risks for endangered species (their parameter 
p is the same as a in this paper; a' is the same quantity 
in both papers). In Model 1, no density dependent 
feedback occurs (h  = 0). 

Finally, it is Model 2 that contains full-fledged den- 
sity dependence: 

In many cases, a one-sided variant of Model 2 is of 
greatest interest. and we can redefine Model 2 as 

Testing for density dependence can be regarded as de- 
termining whether the added parameter in Model 2 
produces noticeably improved description of the data. 
The first step in such determination is estimating the 
unknown parameters from the data. 

Statistically, the problem of connecting the model 
(Eq. 1) with data amounts to  specifying a likelihood 
function. Let n,, n , ,  . . . ,n, be the recorded population 
abundances, so that q is the number of one-step tran- 
sitions and q + I is the total number of observations 
in the time series. Let x, = In n,>, x ,  = In n , ,  . . . , x, 
= In n, denote the log-transformed abundances. The 
likelihood function gives the probability that, under 
the stochastic mechanism defined by Eq. 1 ,  the out- 
come of the process N, would be the observed time 
series. The likelihood function is defined as the joint 
probability density function (pdf) for the random vari- 
ables Nu, N, ,  N,, . . . , N, evaluated at  n,>, n , ,  n,, . . . , 
n,. It is more convenient to specify the likelihood func- 
tion for the log-transformed observations, because of 
the autoregressive structure indicated by Eq. 5. Given 
that log-population size is a t  .u,-, a t  time t - 1, the 
distribution of .Y, is, according to Eq. 5, normal with 
a mean of .u ,  , + a + b e x p ( x ,  ,) and a variance of a'. 
Thus, the pdf for .Y,, given X,+, = x,-,, is a normal 
curve: 

Because of the Markov property, the joint likelihood 
of the data is the likelihood of a transition from x, to  
x,, multiplied by the likelihood of a transition from .I-, 
to  .u2. etc. This joint likelihood is just a product of 
normal pdf  s of the form given by Eq. 14. It is a function 
of the data values xu, x,, . . . , x,. and, more impor- 
tantly, of the unknown model parameters a, b, and a': 
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TABLE1. Maximb~m likelihood estimates for unknown parameter a,,' in Model 0 (random walk), parameters a ,  and a,' in 
Model 1 (stochastic exponential growth), and parameters h2 ,a?,and u2' in Model 2 (stochastic logistic growth). Observed 
population abuntiance at time t is n,: also x, = In n,, y, = s,- x, , .  P = b,+ jl? + - . .  + y,)/q, and A = (n,, + n ,  + . . .  
+ n, l )/q. 

Model 0 

Model 1 a ,  = J  t,' 

4 

2 CL,, - .P)(fl, I -

Model 2 h^, = " a,4 

2 (n, I - A)' 
/ I 

This likelihood function L(a,  h, a') plays a central role 
in parameter estumation and hypothesis testing. 

We must note that Eq. 15, strictly speaking, is not 
the joint pdf of .Y,>. XI .  . . . . X, evaluated at  the ob- 
servations (it is not the full likelihood). Rather, it is 
the joint pdf of XI , X,. . . . , X,. conditional on .Yo = 

.I-,, and evaluated at  the observations. We recommend 
conditioning on the initial observed population size 
(and using Eq. 15 as  the likelihood) because in practice 
the probabilistic mechanism producing the observa- 
tion ,u, is typically unknown. 

Maximum likelihood (ML) parameter estimates have 
numerous desirable statistical properties (Stuart and 
Ord 199 1). ML estimates are defined as  the parameter 
values, denoted a,6,and C', that jointly maximize L(a. 
h, a') (or equivalently, In L(a, b, a')). M L  estimates are 
asymptotically efficient (they have the smallest vari- 
ances in large samples), are consistent (variances ap- 
proach zero as  q + a ) .  are asymptotically unbiased 
(biases approach zero as  q + a ) ,  and have distribu- 
tions that approach normal distributions for large sam- 
ples. Standard mathematical statistics books only list 
these properties for independent, identically distrib- 
uted observations (Stuart and Ord 199 1. Rice 1988). 
We point out that these desirable properties of M L  
estimates have been demonstrated for time series mod- 
els (dependent data) of this type as well (Bhat 1974, 
Tong 1990). 

Obtaining M L  estimates for the random walk (Model 
0) and exponential growth (Model 1) models is easy. 
Let L,>(a2) represent the likelihood function for Model 
0. that is. Eq. 15 with a = 0 and h = 0. Let L,(a. u') 
represent the likelihood function for Model 1 (h = 0). 
Also. let J; = .u, - x, , , t = 1.  2, . . . , q. Note that J; 

can be thought of as  the per-unit-abundance growth 
rate observed in the population for transition t. The 
value of a'. denoted h,>', that maximizes L,(a2) appears 
in Table 1 .  It is easily found by setting d In L,,(a2)/da' 
equal to  zero and solving for a'. The values of a and 
u' that jointly maximize L , (a ,  a'), denoted a ,  and C I 2 .  
also appear in Table I.  They are found by setting d In 
L,(a .  ~ ' ) / a a  and d In L , (a ,  a2)/da2 equal to  zero si- 
multaneously. 

The estimates for Models 0 and I are familiar ones. 
Let Y,, Y2, . . . , Y, denote the one-step differences in 
logarithmic population sizes: Y, = .Y, - .Y, , (the value 
realized by Y, in the data is J',). Because the Y,'s are 
increments of Brownian motion under Models 0 o r  1, 
much is known about their statistical properties (see 
Dennis et al. 199 1). Under Model 0, Y, - normal(0. 
a') and Y,, Y,. . . . , Y,  are independent. Under Model 
I .  Y, - normal(a, a') and Y,, Y2, . . . , Yq are indepen- 
dent. Both models reduce to simple cases of random 
sampling from normal distributions. Thus, standard 
confidence intervals from normal theory for u2 (Model 
0) o r  a and a 2  (Model I) are valid and exact. Dennis 
et al. (1991) give further details. 

For the full stochastic logistic model (Model 2), ob- 
taining M L  estimates is also easy. T o  keep notation 
consistent, we will write L,(a, h. a2) instead of L(a, h. 
a') for the likelihood function of Model 2 (Eq. 15). The 
values of h, a ,  and u' that jointly maximize L,(a, h, a2) 
are listed in Table 1. The Model 2 estimates are also 
familiar ones. The estimates of a and hare least squares 
estimates obtained by performing a linear regression 
of J:, on n ,  ,, t = 1, 2, . . . , q. Thus. a,, h,. and C22 can 
be calculated with any standard regression package. 

Confidence intervals printed by standard regression 
packages, however, are not valid for Model 2. Printed 
hypothesis tests for parameter values are not valid ei- 
ther. For the printed intervals and tests to be valid. the 
Y,'s would have to have independent normal(a + h n , ,, 
u2) distributions (the standard linear regression model). 
Under Model 2, though, the Y,'s are not independent. 
due to the autoregressive structure of the model, nor 
d o  they have unconditional normal distributions. The  
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overlap between the standard linear regression model 
and Model 2 stops at point estimation; both models 
happen to have identical ML estimates. The statistical 
distributions ofthe ML estimates under the two models 
are radically different. though, and so interval esti- 
mates and hypothesis tests for Model 2 cannot be based 
on the ordinary regression model. 

Instead, approximate confidence intervals for pa- 
rameters in Model 2 can be found by either bootstrap- 
ping or jackknifing. Bootstrapping involves estimating 
the distributions of a,, h,, and CZ2in some fashion using 
the data. The following parametric bootstrap method 
makes efficient use of the information present in mod- 
est-sized samples (q = 20). The procedure is simple 
but requires some computer programming. First. from 
the data calculate the ML parameter estimates for Model 
2 (Table 1). Second. repeatedly (say, 2000 times) com- 
puter-generate time series of the same length as the 
original data from the estimated model: 

A given series generated from the estimated model 
("bootstrapped" series) will be denoted with asterisks: 
s,>*, Each series should be started at the x,*, . . . ,s,*. 
observed initial value: .Yo = xu* = x,. To each such 
bootstrapped time series, fit Model 2 by calculating 
bootstrapped ML estimates, denoted a2*, 6,*.and CZ2*. 
using the expressions in Table 1. Third. for an ap-
proximate 95% confidence interval for a, take the 2.5'h 
and the 97.5'h sample percentiles of the 2000 a,* val- 
ues. Likewise, use the h^?* and the C2'* values to con- 
struct confidence intervals for h and c2. An adjustment 
known as the bias-corrected percentile method (see 
Efron and Gong 1983) might make the coverage rate 
of the bootstrap confidence interval closer to 95%. 

Jackknifing also involves using the data to estimate 
the distributions of i2.&?. and C2,, and it typically 
requires less computing time. Lele ( 1  99 1) describes a 
jackknifing technique for dependent data. For Model 
2, Lele's technique entails dropping transitions from 
the data one by one and refitting the model each time 
to the remaining transitions. A transition here is a 
change in the data over one time step, that is, from 
x, , to x,. One performs the regressions on the pairs 
(v,,n,). (I>,, n,),  . . . . (y,/, n,- ,). each time leaving out 
(y,. n, ,). where t = 1. 2. . . . , q. Lele (1 99 1) provides 
expressions for consistqnt estimates of the variances 
and covariances of a,, h,. and 5,'. 

We have focused our computer simulations in this 
paper on evaluating hypothesis testing methods and 
cannot make any recommendations at this time con- 
cerning which type of confidence intervals for Model 
2 parameters have superior properties. A large-scale 
evaluation of the coverage probabilities for boot-
strapped and jackknifed confidence intervals is a topic 
for future research. 

Missing data can be handled in the ML estimates by 
simply incorporating in the analysis all the one-step 
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transitions present in the data. Thus, if the jhyear (or 
whatever time period) population size, n!, was missing, 
one would perform the regression calculations using 
@I, no), Cb12> nl), . . . > @ / - I ,  n,-2), @,+,> n,+1), . .  . >Cb1"? 

n,-,). One missing year means that there are q - 2 
one-step transitions present in the data (two transitions 
missing). The ML formulas (Table 1) would have q -
2 instead of q as a divisor. and A (Table 1) would 
include n, ,  n , ,  . . . , nI - , ,  n,, ,, n,,,, . . . , n,-, in the 
sum (but not n , ,  or n,). 

Statistical theory draws a careful distinction between 
a statistical hypothesis and a scientific hypothesis (for 
instance, see Stuart and Ord 199 1). A statistical hy- 
pothesis is an assumption about the form of a proba- 
bility model, and a statistical hypothesis test is the use 
of data to make a decision between two probability 
models. A scientific hypothesis, on the other hand, is 
an explanatory assertion about some aspect of nature. 

For density dependence studies, a general scientific 
hypothesis of interest is the assertion that a popula- 
tion's abundance produces a negative feedback effect 
on its growth rate (Berryman 1991a). From this as- 
sertion, we expect that time series observations of a 
density-dependent population would lead us to favor 
Model 2 over Model 1 as a model of the population's 
abundance. However, investigators should be aware 
that other stochastic mechanisms besides ecological 
feedback can produce observations that pass statistical 
density dependence tests, including the test described 
here (see Discussion). 

When deciding between two models. the likelihood 
ratio (LR) test originating with Neyman and Pearson 
provides the benchmark for test power (Neyman and 
Pearson 1933. Stuart and Ord 199 1). If the two prob- 
ability models are completely specified (no unknown 
parameters), the LR test has power greater than or 
equal to any other size cutest, according to the Neyman- 
Pearson Lemma (Stuart and Ord 199 1). Here, how- 
ever. Models 0, l ,  and 2 are not completely specified, 
that is, they contain unknown parameters. LR tests 
that are modified to accommodate unknown param- 
eters are sometimes called "generalized LR tests." The 
statistical criteria for choosing test methods are more 
complex when one or more of the models is not com- 
pletely specified. In some simple textbook cases (for 
example, a one-sided t test), the LR test is the uniformly 
most powerful test. In other cases, the power of the 
LR test tends to compare quite favorably to other tests 
according to various definitions of "asymptotic relative 
efficiency" (these criteria are reviewed by Serfling 1980 
and Stuart and Ord 1991). Thus, LR tests for com- 
paring Models 0 and I ,  Models 1 and 2, or Models 0 
and 2, if feasible to construct, would likely offer desir- 
able power properties. 

In general, the LR test for comparing two models, i 
and J say, is constructed as follows. The model with 
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the smallest number of unknown parameters typically 
forms the null hypothesis, while the more ~ o m p l e x  
model becomes the alternate hypothesis. Let L, denote 
the likelihood function for the null hypothesis (Model 
i ) ,  evaluated at  the M L  estimates of all unknown pa- 
rameters in the model. Essentially, L, represents the 
estimated joint probability density of the data (or es- 
timated likelinood that the data would have arisen) 
under Model i. Likewise, let L, denote the alternate 
hypothesis (Model J )  likelihood function. maximized 
over all parameter values permissible in the model. 
The LR test is to  choose between Model i and Model 
j on the basis of the value of the LR test statistic: 

The decision is made in favor of Model i if A,, > c, 
where c is some constant cutoff point selected by the 
investigator and is made in favor of Model J if A,, 5 

c. The value of c is selected so that the probability of 
wrongly choosing Model J when the data in fact arise 
from Model i (that is, the probability of a Type I error) 
is fixed at  some small number, a (the size of the test). 
The study of such LR tests occupies a prominent por- 
tion of any mathematical statistics text (e.g., Bain and 
Englehardt 1987, Rice 1988). 

The  essential problem in constructing an LR test is 
finding the value of c corresponding to the desired test 
size, a. In the normal-based linear models of analysis 
of variance and regression. the test statistic A,, is a 
monotone function of the more familiar variance ratio 
statistic. Under the null hypothesis, the variance ratio 
statistic has an F'distribution. The value of c then is 
calculated by transforming the 100(1 a)Ihpercentile-

of the appropriate Fdistribution. In a broad class of 
other models, including many nonlinear regression 
models. time series models, and loglinear models, the 
statistic G,,' = -2 In .I,,has, under the null hypothesis, 
a distribution that converges to  a chi-square distri- 
bution as  sample sizes increase. The value of c is ob- 
tained (approximately) from the 100( 1 percentile-

of the chi-square distribution. Unfortunately, for test- 
ing among Models 0, I ,  and 2, blind application of 
these traditional results can lead to erroneous infer- 
ences. 

In the case of testing Model 0 (random walk) vs. 
Model I (exponential growth), the LR statistic does 
reduce to  a statistic with an F distribution (with I and 
q - 1 degrees of freedom), o r  equivalently, a Student's 
t distribution (q - 1 degrees of freedom). Under Model 
0. L, = L,(CUL) is the likelihood function evaluated at  
the ML estimate of oL (Table I), and L,  = L l ( a l ,  C12) 
is the likelihood function evaluated at  the M L  esti- 
mates of a and oL (Table 1). The LR test statistic can 
be written in several algebraically equivalent forms: 

Here, 

is the familiar t statistic for testing whether the mean 
is zero or  not for independent normal(a, a2) random 
variables. Under  Model 0, T,, has a Student's t dis-
tribution with q - 1 degrees of freedom. Alternatively, 
TUl2= F,, has a n  F distribution with 1 and q - 1 
degrees of freedom. Thus, the cutoff point c for A,, is 
a simple function of an F or  a Student's t percentile. 
Model 1 is favored over Model 0 if / T,, ( r where 
I,,,: is the 100[1 - (a/2)lth percentile of the appropriate 
Student's t distribution. 

In some circumstances, a one-sided hypothesis about 
a might be of interest. For instance, a test of M,: a = 

0 vs. I I , :  a < 0 could be used to determine if an en- 
dangered species is in decline or  not, provided the spe- 
cies is not abundant enough for density dependence 
effects to  be important. The one-sided test in this case 
would reject H, if T,, 5 t ,-,,. 

Unfortunately, for testing Model I vs. Model 2, the 
distribution of the LR statistic is unknown. The  like- 
lihood function maximized under Model 2 (Eq. 15) is 
given by L2 = Lz(a7, b2, CL2). The LR test statistic can 
be written in the following forms: 

Here G I z 2  = 2 In ,l,,, and 

4 

TI,  = L[(q - 2) ( n ,  - ) 2 / ( q 7 7 ) ] 1. (21) 
I I 

The  statistic TI ,  is identical to the familiar t statistic 
used for testing whether the slope parameter is nonzero 
in a linear regression. However, TI ,  (Eq. 21) does not 
have a Student's t distribution, not even approximate- 
ly, due to  the time dependence of the observations. 
Testing for density dependence based on an assumed 
Student's t distribution for T I ,  produces unacceptably 
inflated Type I error rates (see Discussion). 

One should not even be lulled into using the tradi- 
tional chi-square approximation for the distribution of 
GlL2.  Under the exponential growth model of the null 
hypothesis. the population is not ergodic (A',does not 
probabilistically tend to return to any given abundance 
level). The  value h = 0 is at the edge of the set of values 
(h  < 0) for which the stochastic process A: is ergodic. 
Without ergodicity, the theorems of mathematical sta- 
tistics that give the chi-square approximation for GI,? 
d o  not apply. Simulations (not reported here) indicated 
that the use of the chi-square approximation produces 
inflated Type I error rates. As can be seen from Eq. 9, 
the situation is akin to testing whether (3 = 1 in an 
AR(1) process, a well-known case in which the chi- 
square approximation for Gtl2 fails (Dickey and Fuller 
1981). 
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Instead, the distribution of A,, (or T I ? ,  o r  GIZ2)  can 
be estimated from the data through parametric boot- 
strapping. The critical percentile. c, is an unknown 
function of the two unknown parameters. a and 02,in 
the null hypothesis (Model 1). If Model I did indeed 
give rise to the data, then the M L  estimates (Table I) 
are in principle quite good estimates of a and u2. In 
fact, the ML estimate a ,  and the bias-corrected esti- 
mate of oZ given by 

are the uniformly minimum variance unbiased esti- 
mates. We would expect therefore that the time series 
model given by 

where Z,,%,. . . . are independent normal(0, I) random 
variables. represents a reasonably good estimate of the 
mechanism that produced the data under the null hy- 
pothesis. We have found in our simulations a slight 
but detectable advantage to using the unbiased esti- 
mate, C12. in place of C I L(see Test validation). 

The bootstrap idea is straightforward. Generate data 
sets repeatedly from the cstinzatcdnull hypothesis model 
(Eq. 23). For each of these "bootstrap" data sets, fit 
Models 1 and 2 and calculate an LR statistic (A , , ,  TI,, 
or GIzL).  The resulting 2000 or so LR statistic values 
constitute a random sample from the cstinzatcd dis- 
tribution of the test statistic under the null hypothesis. 
The appropriate sample percentile of those values be- 
comes the estimated critical value for the test. We use 
the term "parametric bootstrap test" instead of "Mon- 
te Carlo test" to emphasize the fact that the model 
under H I  is being estimated (Beran 1986, Efron 1986). 
The terminology is common in the statistics literature 
(e.g., Schork 1992). 

The parametric bootstrap likelihood ratio (PBLR) 
test is quite simple to conduct using the following steps. 
The two-sided test of H I :  b = 0 vs. H,: h # 0 is de- 
scribed first. (I ) Obtain M L  estimates for all parameters 
in Models 1 and 2 using the expressions in Table 1. 
(2) Calculate TI,' (or G I z 2 .  o r  A,,) as in Eq. 21. (3) 
Generate 2000 or  more data sets in the form xu*,x,*. 
. . . ,xq* from the estimated null model (Eq. 23). Each 
of these bootstrap data sets should start at x,* = x, 
and be the same length as  the original set. (4) Calculate 
for each bootstrap data set the parameter estimatesfor 
Models 1 and 2 (Table I), obtaining a , * ,  t I 2 * ,  a,*, b2*, 
CZ2*. (5) Obtain in this fashion 2000 (or so) bootstrap 
values of the LR test statistic, (Eq. 21; or ,1,,* or 
GILL*).Each of these TIL2* values represents an inde- 
pendent observation from the estitnatcd distribution 
of  T I z Z  (likewise AIL: GIZ2).  (6) Take the 100(1 - u)lh 
sample percentile, .f<:.as the estimate of the critical 
percentile of the distribution of TILL.  (7) Reject H I :  b 
= 0 in favor of H,: b # 0 if the original value of TI,' 
is greater than .f,. 

Alternatively, a t  step 6 one can estimate a P value 
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for the test with the proportion of TIL2*  values that are 
greater than or  equal to  T lL2 .  The null hypothesis would 
be rejected if 5 cu. where P is the estimated P value. 

Note that in each bootstrap cycle of the calculations, 
only the value of the original data, the original 
ML estimates, and the original test statistic need to be 
retained; the values a ,*.  6,*, tLL*,  and x,*. a?*, ElL*, 

.u,*,. . . ,x,* d o  not need to be stored. The procedure 
is easily programmed and is acceptably fast: our  pro- 
gram, written in the GAUSS matrix language (Aptech 
Systems 199 I), completes the calculations. using 8000 
bootstrap samples, for one moderately sized (q - 16) 
data set in - 1 1 min on an old IBM AT/286. (A short 
SAS program written by the authors for conducting the 
PBLR test takes z 6 0  min to run on a 286 machine.) 

The one-sided PBLR test of  H I :  A = 0 vs. H L :  b < 
0 is straightforward. In step 1 above, reject HLoutright 
if d, r 0; otherwise continue. In step 5 above, calculate 
TI,* using Eq. 2 1 for each of the bootstrap samples, 
instead of TIz2*. In step 6, estimate the critical per- 
centile of the distribution of T I L  with the 100aih sample 
percentile, f , , , ,  of the T I ? *  values. Alternatively, es- 
timate a P value by the proportion of TI?*  values that 
are less than TI,. In step 7. reject H ,  if TI ,  5 f l  ,,. or  
if < a .  

We point out that the distribution of  TI, is not sym- 
metric, nor is it centered at  zero. The two-sided test 
conducted with the 100(~u/2)'~ 100[1and - (a/2)lth 
sample percentiles of the TI,* values is different from 
the previously described two-sided test that uses the 
100(1 a)lh percentile of the TI,'* values. The power -

properties of both tests have not been compared. 
A PBLR test of Model 0 against Model 2 might be 

of interest in some studies. Other methods for distin- 
guishing a drift-free random walk from a density-de- 
pendent process (e.g., den Boer 1991) are likely not as  
powerful. The one-sided test of H,: (I = 0. b = 0 vs. 
H L :  a # 0. b < 0 would be conducted as follows. (1) 
Obtain M L  estimates for all parameters in Models 0 
and 2 using Table 1.  Reject H, outright if I;? r 0; 
otherwise continue. (2) Calculate the LR statistic as 

(3) Generate bootstrap data sets in the form xu*,x,*,  
. . . ,s,* from the estimated random walk model, 

starting at  so*= xcj.(4) For each bootstrap data set, 
calculate the parameter estimates for Models 0 and 2: 
c,2* , a,*, LL*. t z2* .  From these parameter estimates, 

calculate a value of the LR statistic as 

(5) Obtain in this fashion 2000 (or so) values of ,lOL*. 
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The provision of setting ,I,,* equal to 1 when b,* r 0 
will result in a one-sided test. (6) Take the I 0 0 d h  per- 
centile, i,,.as the estimate of the critical percentile of 
,1,,. Alternatively. estimate a P value by the proportion 
of ,lo,* values that are less than 'IOL.(7) Reject H ,  if 
'IOLi Xcr. or  if P < LY. 

Of course, Model 1 contains Model 0 as a special 
case. The pre\ iously described test of Model 1 against 
Model 2 thus implicitly includes Model 0 in the null 
hypothesis. Normally, the test of Model 1 against Mod- 
el 2 should be used, unless there are specific reasons 
for restricting the null hypothesis to a pure random 
walk. 

The PBLR tests can accommodate missing data. The 
fundamental "observation" in the likelihood function 
(Eq. 15) is not a (logarithmic) population size, s,,but 
a transition from s, , to x,. If x, is missing from the 
data. it means that two transitions are missing: x , ,  to 
s,,and s,to s,,, . The likelihood function (Eq. 15) with 
p(x, Ixu, ,) and p(x,+, Ix,) omitted from the product is 
the joint pdf of X I ,  X,. . . . , X, , given s, and Xi+L, 
X,,,,. . . , X, given x i + ,  . This likelihood is used as the 
fundamental building block for parameter estimates 
and hypothesis tests. 

When observations are missing, the M L  parameter 
estimates for Model 2 are easiest to  calculate with a 
least squares approach. The formulae (Table I) oth- 
erwise must be altered in messy ways. Take as the 
fundamental data set the logarithmic differences y,, y,, 
. . . , J ~ , , v , ~ ~ , J ~ + ~ ,. . . ,J ' ,(J\ ,J '~,,  missing). Thesam-  
ple mean of the y12 values provides the ML estimate 
of a' for Model 0. The sample mean of the differences. 
7,and the sample mean of the (y, p)2 values provide -

respectively the M L  estimates of a and a 2  for Model 
1 .  The linear regression of y, on n , ,  (using all transi- 
tions present in the data) provides M L  estimates of a 
and h for Model 2. The M L  estimate for u2 in Model 
2 would be the sum of squared errors (from the re- 
gression) divided by the number of transitions present 
(q - 2, if just one population size is missing). The 
bootstrap data sets are generated (Eq. 23 or 25) as a 
series of one-step transitions starting at  xu (xu, XI*, 
X,*. . . . , X, ,*), followed by a series starting at  s,,, 
(s,,,, Xi+,*, . . . , X,*). All parameter estimates and 
tests are thus conditioned on the observed starting val- 
ues, x, and x i + ,  , of series of one-step transitions. 

An alternative approach to testing with missing data 
is to condition only on xu. Parameter estimates and 
the test statistic are computed as  described above using 
all one-step transitions present in the data. However. 
bootstrap data sets are generated starting at  xufor all 
times (xu, XI*, X2*. . . . ,X,*), including missing times. 
The bootstrap values of the test statistic are then cal- 
culated after omitting from the bootstrap data sets the 
generated observations occurring at  missing times (that 
is, omit XI* before calculating TI,*). 

The two approaches to handling missing data are 
subtly different. The first treats the uninterrupted time 

series essentially as separate series, but assumes the 
series are governed by the same (density-independent 
o r  -dependent) model. The first approach would be 
preferred if, for instance, the population was restarted 
at  size x,, , after some drastic change (a harvest o r  
catastrophe). The second approach treats the uninter- 
rupted series as one single series with some observa- 
tions (the missing ones) simply unknown. Which ap- 
proach is most appropriate will be case specific, although 
the resulting tests are not likely to differ much unless 
the number of missing transitions is large. The statis- 
tical properties of the two approaches have not yet been 
compared. 

Because the PBLR test is a parametric test. some 
additional model checking is advised in any applica- 
tion. Judicious use of model diagnostic techniques will 
help minimize problems associated with "Type 111 er- 
ror" (fitting the wrong model). In particular, serious 
departures of the data from the Markov property o r  
from the model could likely be detected through some 
form of residual analysis. For the stochastic logistic 
model, diagnostic techniques would center around the 
conditional residuals: P, = x, - x , ,  - a - b e x p ( x , ,), 
t = 1, 2, . . . , q. Under the model assumptions, these 
residuals should be approximately normal white noise. 
The  residuals can be subjected to the customary anal- 
ysis techniques of linear time series modeling (see Tong 
1990:322 for discussion). We often use the Lin-Mu- 
dholkar test for normality against asymmetric alter- 
natives (Lin and Mudholkar 1980, Tong 1990:324) in 
addition to  the standard normal plots and autocorre- 
lation tests. There is a caveat, however: in the nonlinear 
setting, the adequacy of the normal-white noise ap- 
proximation is unknown and varies from model to  
model. The properties of these diagnostic techniques 
for the stochastic logistic model would be a worthwhile 
topic for future study. 

According to statistical principles of asymptotic rel- 
ative efficiency, the PBLR tests represent approximate 
size (Y tests having power functions that cannot be ex- 
ceeded by much. The principles rest on large-sample 
theorems of statistics (Serfling 1980). But d o  these as- 
ymptotic assurances apply to the data sets of moderate 
lengths likely to  be encountered in ecological practice? 
A large-scale, Monte Carlo power assessment of the 
PBLR test of Model 1 against Model 2, along with 
comparative studies of other available tests, provides 
some answers. 

It is desirable that statistical tests have several prop- 
erties. First. their size should be close to their nominal 
size, that is, i f the null hypothesis is true the probability 
of rejecting the null hypothesis should be close to  what 
the investigator thinks it is. Second, the test should be 
powerful enough to detect scientifically interesting de- 
viations from the null hypothesis. Third, the test should 
be robust to measurement error. This last property is 
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FIG. 1. A contour plot showing estimated power of the 
parametric bootstrap likelihood ratio test of density depen-
dence as a function of model parameters a and b. The null 
hypothesis for the test is Model 1 (b  = O), and the alternate 
hipothesis is Model 2 (h < 0). Each indicates location of 
1000 simulated tests; each test used 200 bootstrap samples 
and the values q = 19, n,, = - a h ,  and c = 0.2. The power 
surface was estimated using a distance weighted least squares 
algorithm (McLain 1974). 

particularly important when dealing with population 
abundance data, which commonly contain substantial 
uncertainty. 

We have investigated the qualities of the PBLR test 
of Model 1 against Model 2 (both one- and two-sided) 
with Monte Carlo simulation. Using a known set of 
parameters we generate a time series of simulated pop-
ulation densities according to Eq. 1. This simulated 
time series is then subjected to  the PBLR test exactly 
as  if it were data from field observations. For each set 
of parameters (a, b, u, q,  and no: we have couched the 
simulations in terms of a rather than u2) chosen for 
study, this process was repeated a large number of 
times, usually 1000. All tests were conducted a t  a nom-
iaal 0.05 level. The proportion of times the null hy-
pothesis was rejected was recorded for each parameter 
set. If the parameter h was zero, that is if the null 
hypothesis of no density dependence was true, this 
proportion represents a n  estimate of the size of the 
test. If b was not zero then the proportion of rejections 
is an estimate of the power of the test under the set of 
parameters. We denote by $(a, b, u, q, nu) the proba-
bility of rejection of the null hypothesis as a function 
of model parameters (power function), and by 4(a, b, 
u, y, no) its estimate from simulations. 

Tcst size 

We examined the size of the PBLR test (one- and 
two-sided) under a broad range of parameters. The 
parameters a and a ranged from 0.05 to 1.5, while q 

-
eters were tested each with two separate simulations 
of 1000 trials. The sample mean of these 128 values 
of 4 for the one-sided tests was 0.0504 with a sample 
variance of 0.0000470. The underlying population 
mean of the 4 values is thus not significantly different 
from 0.05 (Z = 0.66, A' = 128, P = .25). The sample 
variance was close to  the variance expected under bi-
nomial sampling, 0.0000475 (= 0.05(0.95)/1000). Fur-
ther, despite the wide variety of parameters used. the 
distribution of 4 values observed was not significantly 
different from a normal distribution with a mean and 
variance of 0.05 and 0.0000475, according to a Kol-
mogorov-Smirnov test (D = 0.06 1 1, N = 128, P > .5). 
Results for the two-sided tests (based on T,,2) were 
similar. Thus there is no reason to believe that the true 
size of the PBLR test is different from its nominal size. 
If any deviations d o  exist, they are of insignificant mag-
nitude. 

The size results reported above were obtained for 
the PBLR test that uses the unbiased estimate, SI2 .  
instead of the M L  estimate, Z12,in the estimated null 
hypothesis model (Eq. 23). We detected through sim-
ulations a slight but noticeable increase in the test size 
over the nominal size of  0.05 when the M L  estimate 
is used. While the increase is small enough to be of 
little practical importance, it is easily corrected simply 
by using S ,2 .  

Tcst power 

As with the size of the test, we investigated power 
extensively with simulations. The power of a test de-
pends in general on  the specific true values of the pa-
rameters. We have assessed the influence of  b, a ,  a, q, 
and nu on  power. A number of our results contradict 
unreflective intuition. 

First, the probability, $(a, b, u, q, nu), of rejecting 
the null hypothesis is nearly independent of the pa-
rameter b as long as  b is not zero (Fig. l). Thus, the 
influence of b on power is not continuous; instead, h 
acts as a switch to  change the qualitative behavior of 
the model. This discontinuity in the power function is, 
from the standpoint of  statistical theory, unusual (e.g., 
Bain and Engelhardt 1987:373). One would normally 
expect the power function to increase smoothly, start-
ing from a level of a,  as the parameter in question 
becomes farther from its hypothesized null value. 

However, such smooth textbook dependence of 
power on  b would in fact be a n  undesirable property. 
The parameter b is related to  the level around which 
X, is fluctuating according to the density-dependent 
model (Eq. 1). While the concept of  point equilibrium 
(carrying capacity) is of  questionable meaning in a sto-
chastic model (Dennis and Costantino 1988, Wolda 
1989), we can see that the level - a l b  (Eq. 5) represents 
a center for the return tendencies of A',. If A', > a l h ,  
then In A',, , is expected to  decrease (Eq. 5), while if X, 
< a / b ,  In A:+, is expected to  increase. One presum-
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,F the population density to  move toward a central value 

when displaced from it. It makes sense that a deviation 
in the initial population size would increase the test 
power. However, if the parameter a is low, then power 
decreases again if no is too far below the value of -a lh  
(Fig. 2b). With a low a and a low initial size, the pop- 
ulation will tend to increase for a number of time steps, 
making it difficult to  distinguish the time series from 
one that would be produced by a population under- 
going exponential growth. 

We turn now to the effect of environmental variation 
in growth rate on the power of the PBLR test. The 
parameter that measures environmental variation is o, 
the standard deviation of Y,= In (.V,/.Vl ,) conditional 
on  A', , = n, ,. (The standard deviation of Y, condi-
tional on  hri,= n, is an unknown, increasing function 
o f o  that depends on t as well.) Recall that o is estimated 
by the root-mean-squared error in a linear regression 
of the yl values on the n , ,  values (Table 1). The in- 
fluence of o on power is as intriguing as the influence 
of no. As a increases so does the power of the PBLR 
test, although the effect is minimal until o is around 
the magnitude of a (Fig. 3). This increase in power is 
counterintuitive to  investigators accustomed to think- 
ing about "error" in standard regressions. However, 
the above discussion of no and power resolves the ap- 
parent contradiction. In a nutshell, the test works by 
detecting return toward an abundance level from de- 
viations away from that level. Stochastic fluctuations 
provide some of these deviations. 

As would be expected, increasing the length of the 
time series, y + I ,  increases power. Fig. 4 shows 4 as 

I 1 


populat~on dens~ty, no The null hypothes~s for the test 1s 
Model 1 ( b  = O), and the alternate hypothes~s IS Model 2 (b  
< 0) Each square represents 1000 s~mulated tests, each test 
used 200 bootstrap samples and the ~a lues  q = 9, b = 0 . 0 1 ,  
o = 0.05. (a) a = I 2 (b) a = 0.3. 

ably would not want the power o f a  density dependence 
test to depend on whether the population was fluctu- 
ating around 1000 or  100, but rather only on whether 
the population was fluctuating around (that is, was 
showing some tendency to return to) some unspecified 
level. It is thus entirely reasonable that the numerical 
value of b does not affect the power of the test under 
Model 2. because b is simply a reflection of the units 
in which population size is measured. 

The interaction of initial population size, no, and 
power is also interesting. Power is quite low when n ,  
is near a l h .  As n,, deviates from this value. power 
increases (Fig. 2a). What distinguishes the density de- 
pendent model from the null model is the tendency for 

FIG 3 Est~matedpower of the parametric bootstrap I~ke- 
l~hoodratlo test of dens~ty dependence as a funct~on of model 
parameters a and o. The null hypothes~s for the test 1s Model 
1 ( b  = 0). and the alternate hypothes~s IS Model 2 ( h  < 0). 
Each square represents 1000 s~mulated tests, each test used 
200 bootstrap samples and the values q = 9, h = 0 01, no 
= -a /b  Contours were drawn as In Fig. 1 
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1.00 # a = 1 . 5  slze of  the PBLR test for slgn~ficancetesting, ~t will r .a-1.2 
affect power estimates 

Zfeasutement  PI  rot 

+a-0.6 $ The sensitivity of regression analys~sto measure-
/ / / / I ment errors ~n the predictor variables 1s well known 

0.60 a-0.6 1 (Fuller 1987) We were particularly concerned about1 
l l  ' 

a-0.3 the impact of measurement error on the PBLR test 
I 

because the "predictor" varlable In the regression is 
population denslty. Populations are frequently estl-
mated rather than censused, and In some cases the time 
serles consist of relative population Indices (light trap 

0.201 1-sided test Counts, redd Counts, etc ) Sampling error could poten-; *' tially be an important source of vanabillty In the time 
2-s'ded test series in these sltuatlons What happens if the PBLR

0.05 
O#OO2 - L----l , - , test is applled d~rect lyto such time senes data9 

4 8 
l 6  32 64 12' We have Investigated the consequences of sampling 

FIG.4. Estimated power of the parametric bootstrap like-
lihood ratio test ofdensity dependence as a function of sample 
size, q (number of one-step transitions in the time series). The 
null hypothesis for the test is Model I (h  = 0). Each symbol 
represents I000 simulated tests; each test used 200 bootstrap 
samples and the values h = -0.01, u = 0.05. n,, = a / h .  

a function of q for a spectrum of a values ranging from 
0.3 to  1.2. All simulations in this figure had initial sizes 
fixed at  n,, = -a/h,  and thus power is a t  a local min-
imum. Nonetheless. power becomes quite reasonable 
by the time q is 16. Even time series as short as eight 
transitions can have a nontrivial probability of reject-
ing the false null hypothesis if the rate parameter a is 
not small. In the figure, the two curves marked with 
stars portray power for a series of runs with a equal to  
0.6. The solid line is for one-sided tests and the dashed 
line represents two-sided tests. The difference between 
the two types of tests in the probability of correctly 
rejecting the null hypothesis may be important, par-
ticularly when power is modest. In the figure when q 
is 16, the power of the one-sided test is almost twice 
the power of the two-sided test. Many ofthe abundance 
records for natural populations are only 10-30 yr long. 
Power is expected to  only be moderate. Thus we strong-
ly recommend the use of the one-sided test. 

Knowledge of a test's power is extremely useful when 
interpreting results. If power is low then failure to  reject 
the null hypothesis contributes only weak evidence in 
favor of the null model. True power can only be quan-
tified if the real parameters are known. For the density 
dependence test, the power can be estimated in a sta-
tistically consistent fashion by substituting the empir-
ically estimated parameters for the true parameters and 
conducting a Monte Carlo simulation such as  described 
above. However, we suggest some caution in that such 
power estimates will only approximate the true power 
in small samples. The  maximum likelihood parameter 
estimates under the density dependent model have a 
finite sample bias. While this has n o  influence on the 

error with simulations similar to  those discussed above 
in estimating size and power. As above, we generated 
a time series of simulated population densities accord-
ing to Eq. 1 using a known set of  parameters. This 
simulated time series was then contaminated with a 
noise variable representing measurement error and 
subjected to  the PBLR test exactly as  if it were data 
from field observations. Since many population den-
sity estimates o r  relative indices are based in some 
fashion on  binomial o r  Poisson sampling. the variance 
of the noise contaminating N, was itself made propor-
tional to i?v; (the observations entering the data set had 
zero-truncated normal(hT,.cN,) distributions). The re-
sults of this study are summarized in Table 2. Re-
markably, the size of the test is hardly influenced even 
by massive amounts of sampling error. Even more 
remarkably. power is somewhat increased by this com-
mon type of sampling error. We have noted earlier that 

TABLE2. Estimated power of the parametric bootstrap like-
lihood ratio test of density dependence in the presence of 
sampling or measurement error. Each observat~on.n,. sim-
ulated from the stochastic logistic model was replaced by 
an observation generated from a zero-truncated normal(n,. 
cn,) distribution before testing. Power estimates are based 
on 1000 trials. In each trial. q = 9, a = 0.5, u = 0.1, and 
n,,= 50. 
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TABLE 3. Parametric bootstrap likelihood ratio test of density dependence for the grizzly bear population in the Yellowstone 
reglon. The null hypothesis for the test is Model 1 (h  = O), and the alternate hypothesis is Model 2 (h  < 0). Number of 
bootstrap samples = 8000. 

Maximum likelihood parameter estimates 
under Model I (density independence) a ,  = 4.14 x 10 ': u , '  = 1.49 x l o - '  

Maximum likelihood parameter estimates 
under Model 2 (densit) dependence) a, = 1.41 x 10 I: 15, = 2 ; 4 1  x 10 '; u L Z= 1.45 x 10 ~2 

Likelihood ratio statistics5 'I.,,= 0 . 6 0 ;  i,,,, = 2 . 9 :  P = 0 . 7 2  

* Original data consist of the yearly counts of adult females seen with cubs, from 1973-1991 (Eberhardt et al. 1986; R. R. 
Knight. [~rr.sonal c~ot~~ttrlctiic~ation). Values listed here for .2; are calculated from the original data as a 3-yr moving sum (sum 
of 1973. 1974. and 1975 counts. sum of 1974. 1975, and 1976 counts, etc.). 

S: Likelihood ratio test statistic (Eq. 21). estimated fifth percentile of the test statistic distribution under Model I .  and 
estimated P value for the test. 

deviations increase the power of this test. Apparently, 
these deviations d o  not even have to be entirely real. 

We present. in this section. several worked examples 
of the PBLR test of density dependence. Numerous 
examples of density dependence testing in the literature 
have involved insect populations. T o  the scarce supply 
of large mammal examples in the density dependence 
debate, we add a few more (Tables 3-5). Fowler (1 984, 
1987) has given additional information and insights 
about density dependence in large mammals. In this 
section we also analyze 16 insect data sets assembled 
by den Boer and Reddingius (1 989) in order to compare 
results of the PBLR test to  earlier published results. 

The grizzly bear (C'rsus arctos horrihilis) population 
of the greater Yellowstone ecosystem shows no evi- 
dence of density dependence in time series abundance 
data (Table 3). The data (Table 3) consist of a 3-yr 
running sum of adult females seen with cubs. An adult 
female produces cubs on  average every 3 yr, so the 3-yr 
running sum of this relatively visible component of the 
population represents an estimate of the minimum 
number of adult females in the population (see Knight 
and Eberhardt 1984. 1985. Eberhardt et al. 1986, and 
Dennis et al. 199 1 for discussion). Table 3 reflects the 
counts from 1973 through 199 1 (Eberhardt et al. 1986, 
R. R. Knight, personal cornfi~unication). Dennis et al. 
(1 99 1) found increased variability in the data after 197 1. 
possibly related to  the garbage d u m p  closures in 1970- 
1971 or  to  institution of new aerial survey methods. 
The outcome of the density dependence test suggests 
that the population has not yet reached carrying ca- 
pacity, that is, the time series gives n o  reason to favor 
Model 2 over Model 1. 

Results of model diagnostic procedures for the griz- 
zly data are mixed. The residuals from both models 
are normally distributed, according to the Lin-Mu- 
dholkar test (Model 1: LM = -0.28. P = .78; Model 
2: LM = -0.78, P = -.43; see Tong 1990:324). How- 
ever, the residuals from both models have some au- 
tocorrelation, according to standard tests with the first- 
and second-order sample autocorrelation statistics 

(Model 1: G;,= -2.73, P = .0064; Gb2= 1.77, P= 
.077; Model 2: f i b ,  = -2.21, P =  ,027; Gj2= 1.71, 
P = .088; see Tong 1990:324). While the properties of 
these or  other white noise tests have not been inves- 
tigated for the residuals of Model 2, the results suggest 
that the grizzly female population has a higher order 
autocorrelation structure not accounted for by either 
Model 1 o r  Model 2. Oscillations from year-class im- 
balances in the population could cause such autocor- 
relation. The large variability of the population. though, 
gives reason for concern about its long-term viability 
(Dennis et al. 1991). 

Two elk ( C ~ r v u s  elaphus) populations in the greater 
Yellowstone ecosystem have noticeable density depen- 
dence (Tables 4 and 5). The data on the northern Yel- 
lowstone population (Table 4) are winter census rec- 
ords from Houston (1 982: 17): the data on the central 
valley population in Grand Teton National Park (Table 
5) are from Boyce (1 989) and represent summer mark- 
recapture estimates 

The northern Yellowstone population increased rap- 
idly after artificial removals from the park were ended 
in 1969. The population appears to have subsequently 
attained a stochastic equilibrium. The power of the 
density dependence test was enhanced because the ini- 
tial population was far from equilibrium (see T ~ s t  val-
idation). Residual plots and tests show n o  outliers, no 
significant first- o r  second-order autocorrelation, and 
n o  significant departures from normality (Model 1 : LM 
= 0.91, P = .36; f i b 1  = 0.89, P = .37: f i b 2  = 1.26, 
P = .26; Model 2: LM = -1.08, P = .28; Gj3,= 

-1.53, P =  .13; f i b 2  = 0.21, P =  .83; seeTong 1990: 
324). 

The central valley population in Grand Teton Na- 
tlonal Park fluctuates substantially, and the estimated 
P value for the test is just under .05. The Grand Teton 
population has a missing observation in year 1983, and 
so the test was conditioned on n2 ,  (= 1453) in addition 
to  n,, (= 1627) (see Hypothesis fating). The  second 
transition (1 527 to 824) is a possible outlier for both 
Model 1 and Model 2, with a standardized residual of 
-2.7 for Model 2. N o  significant first- or second-order 
autocorrelation is evident in the first 19 consecutive 
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TABLE4. Parametnc bootstrap likel~hood ratio test of density dependence for the northern Yellowstone elk population. The 
null hypothesis for the test is Model 1 (h = 0). and the alternate hypothesis is Model 2 (h < 0). Number of bootstrap 
samples = 8000. 

Population size data. N,* 3171 4305 5543 728 1 8215 998 1 10 529 
12 607 10 807 10 741 1 1  855 10 768 

Maximum li~elihood parameter estimates 
under Model I (density independence) 

Maximum likelihood parameter estimates 
under Model 2 (density dependence) 

Likelihood ratio statistics5 

* Data are winter census records from 1968-1979 listed by Houston (1 982). The 1977 value is an adjusted value given by 
Houston (1 982:23). 

5 Likelihood ratio test statistic (Eq. 21), estimated fifth percentile of the test statistic distribution under Model I ,  and 
estimated P value for the test. 

residuals (Model 1: mi,= -0.69, P = .49; mi, curred simply by chance? If one assumes that all 16 
= -0.95, P = .34; Model 2: m;,= 0.48, P = .63; populations follow the null hypothesis model (sto-
m 2= 0 . 3 2 .  P = .75). With the outlier removed, chastic exponential growth), then two or more "suc- 
the residuals are acceptably normal (Model 1: LM = cesses" out of 16 trials is a plausible outcome when 
1.95, P = .051; Model 2: LM = 1.91, P =  ,056). the success probability is .05 (if U' - binomial (16, 

den Boer and Reddingius (1989) used the Pollard et 0.05), then P[U' 2 21 .19). However. there is more 
al. (1987) randomization test to  look for density de- information present in the collection of P values than 
pendence in 16 insect populations. Their paper pro- simply the number of them < .05. If all the populations 
vides a table with the original data. The randomization were realizations of the null hypothesis model. the P 
test d ~ d  not flag a single population as  density depen- values would represent 16 independent observations 
dent. By contrast, the PBLR test rejects density inde- from a uniform(0, 1) distribution. Then -2 In P, would 
pendence for two of the populations at  the .05 slgnif- be an observation from a chi-square(2) distribution, 
icance level (Table 6). If the regression test for h < 0 and the sum of k such values would be an observation 
based on the Student's t distribution is used, the density from a chi-square(2k) distribution (Fisher's test; see 
dependent count jumps to eight (Table 6). Fisher 1958). From the P values in Table 6. we find 

The den Boer and Reddingius (1 989) data illustrate that S - 2 In P, = 46.1. a value that is just below the 
the role of test power. The regression test is obviously 95Ih percentile of the chi-square(32) distribution (P' 
more powerful but is inappropriate because it is not a = .05 1). Enough of the P values in this meta-analysis 
size 0.05 test (see Discussion). Both the randomization are "leaning" toward the alternate hypothesis end so 
and the PBLR are close to  size 0.05 tests. Because of as  to  cast doubt upon the assumption that all 16 pop- 
the asymptotic relative efficiency of LR tests, the PBLR ulations are realizations of the density-independent 
test probably represents the practical limit of power model, though one would not reject that assumption 
for testing b < 0 in the stochastic logistic model. Even at  a strict .05 significance level. 
though the power can exceed that of the randomization 
test by 50% (see D~scussion). the basic thrust of den DISCUSSION 

Boer and Reddingius' results remains intact. If there The PBLR test can easily be adapted, if desired, to  
is density dependence in these 16 populations. it is testing for density dependence under the Gompertz 
difficult to detect from time series data alone. model (Eqs. 7 and 8). The modification would use x, 

Could the two density dependent cases have oc- values in place of n, values in the parameter estimates 

TABLE5. Parametric bootstrap likelihood ratio test of density dependence for the elk population in the central valley of 
Grand Teton National Park. The null hypothesis for the test is Model 1 (h = 0), and the alternate hypothesis for the test 
IS Model 2 (h < 0). Number of bootstrap samples = 8000. 

Population size data, N,* 	 1627 1527 824 891 1140 1322 1431 1733 1131 
1611 1644 1991 1762 1076 1442 I800 1667 1558 
1396 1753 . . .  	 1453 1804 

Maximum likelihood parameter estimates 
under Model I (density independence) a ,  = 1.45 x 10 2 :  8,:= 6.85 x 

Maximum likelihood parameter estimates 
under Model 2 (density dependence) 6, = 7.31 x 10 I; h, = -4.93 x l o 4 ;6:' = 4.65 x 1 0 2  

Likelihood ratio statistics8 T , , = 2 . 9 2 ;  f,,, = -2.88; P = 0.044 

* Data are simmer mark-recapture population estimates from 1963-1985 (1983 missing) listed by Boyce (1989). 
Likelihood ratio test statistic (Eq. 21), estimated fifth percentile of the test statistic distribution under Model I, and 

estimated P value for the test. 
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(Table 1) for the alternate hypothesis model. The re- 
suiting test is essentially the modification of vickery 
and Nudd's test that was sug-
gested by Pollard et al. (1 987). The test procedure is 
i t h e w i s e  identical to  the test we have proposed. 
Mountford (1988) employed such a G ~ 
PBLR test using Model 0 (random walk) as the null 
hypothesis. 

Reddingius (1 97 1) recognized the theoretical deslr- 
ability of LR tests, and he developed a small table of 
critical values for the Gompertz-based LR statistic us- 
ing Monte Carlo simulation. In practice. the investi- 

gator must estimate parameters from the data before 
referring to the table. Use of Reddingius' table thus is 
quite similar to  conducting a PBLR test for Gompertz- 
type density dependence. 

Many subsequent investigators have taken (implic- 
itly o r  explicitly) the Gompertz model as the alternate 
hypothesis in density dependence tests, but have used 
different test statistics (Bulmer 1975. Royama 1977, 
Slade 1977, Vickery and Nudds 1984, 1991, Gaston 
and Lawton 1987, Pollard et al. 1987, den Boer and 
Reddingius 1989. Reddingius and den Boer 1989, den 
Boer 1990, Holyoak and Lawton 1992. Woiwod and 
Hanski 1992). Crowley ( 1992) modified the Gompertz 
to  include sampling variability. The statistics include 
the sample correlation of the y,'s and s ,,'s (Pollard et  
al. 1987), the slopes of principal and reduced major 
axes (Slade 1977), the reciprocal of von Neumann's 
ratio (Bulmer 1975). and the number of times that the 
one-step transitions have moved toward (or away) from 
a given abundance level (Crowley 1992). 

Of the tests studied by these investigators, the ran- 
domization test of Pollard et al. (1987) based on the 
sample correlation coefficient appears the most pow- 
erful (Vickery and Nudds 199 1. Crowley 1992). This 
is not surprising: the LR statistic for testing whether h 
= 0 in the Gompertz model (or in the logistic model) 
is a monotone function of the squared sample corre- 
lation coefficient: 

Here R is the sample correlation coefficient of the 11,'s 
and x, ,'s (or n, ,'s if the test is adapted to the logistic 
model given by Eq. 1). The randomization procedure 
proposed by Pollard et al. (1987) estimates the distri- 
bution of R or  R2 by taking random permutations of 
the 1:'s to  construct new time series data sets. A new 
value of R2 is obtained from each set. This is essentially 
a form of nonparametric bootstrapping. However. the 
resulting estimate of the distribution of R2(or R, or  A) 
under the null hypothesis does not make use of the 
sufficient statistics a and C 2 ,  and therefore does not 
make the most efficient use of the data ("sufficient 
statistics" contain all the information about model pa- 
rameters that is present in the data: see Rice 1988). 

Our simulations reveal that the randomization test 
of Pollard et al. (1987) is considerably less powerful 

TABLE6. Results of two density dependence tests performed 
on 16 insect data sets listed by den Boer and Reddingius 
(1989). Shown are the values of the likelihood ratio test 
statistic (T ,>) ,the number ofone-step transition~(q), the P 
values estimated bv ~arametr ic  boots t ra~~incl(P). and the 

Pvalues resulting fiom a Student's t distribution with q - 2 

degrees of freedom (P,,,,,,,). The null hypothesis is Model 
~ ~ ~ ~ 1 (b = 0), and the alternate hypothesis is Model 2 (b < 0). 

Order of entry corresponds to order in den Boer and Red- 

dingius' (1989) ~ a b l ~  
1 

T12 9 P Pbtudcnt 

-1.84 18 .243 ,042 
-2.54 18 .089 .0 l l 

-3 14 14 .033 .004 

-3.07 14 ,033 .005 

-1.51 13 .436 ,080 

-2.15 13 ,154 ,027

-2.52 12 ,095 .0 15 

-0.9 1 2 8 ,776 .I85 

- 1.45 18 ,349 ,083 
- 1.29 19 ,457 .I07 
-1.61 14 ,378 .067 

-2.07 13 ,198 .03 1 

72.17 I I .999 .97 1 

than the PBLR test when the data are generated from 
the stochastic logistic model given by Eq. 1 (Table 7). 
The parametric test attains as much as a 50% increase 
in power over a range of parameter values. Even if the 
randomization test is adapted to the logistic model. by 
using n ,  ,'s instead of s ,,'s in Eq. 27, the power levels 
of the parametric test are not approached (Table 7). 

There might be some nonparametric benefits in terms 
of robustness of the randomization test, though such 
benefits have not been assessed. The stochastic logistic 
(Eq. 1) that we have assumed as the alternate hypoth- 
esis is a fairly general model that can describe many 
situations. Possible modifications of the model for 
studying robustness of tests might include use of a 
heavy-tailed distribution for the Z,'s instead of the 
normal distribution, o r  allowing the Z,'s to  be auto- 
correlated. Few abundance data sets have more than 
30 observations, however, and it is likely that the full 
benefits of nonparametric approaches (which depend 
heavily on  large-sample consistency theorems) to  den- 
sity dependence testing will not be realized in practice. 

Use of the Gompertz stochastic model in and of itself 
could involve a loss of power. Detecting growth-rate 
feedback that is proportional to  In N, instead of N,will 
likely require data covering wider ranges of abundance. 
As noted before, a PBLR test can be constructed for 
the Gompertz model; such a test would represent the 
practical limit of power that can be attained under that 
model. If this PBLR-Gompertz test is performed on 
data arising from a stochastic logistic. the size of the 
test remains -0.05. but a detectable loss of power en- 
sues (Table 7). The difference in power between the 
PBLR-logistic and the PBLR-Gompertz quantifies the 
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TABLE7. Estimated sizes and powers of various one-sided density dependence tests, when data arise from the stochastic 
logistic model.* Tests are the parametric bootstrap likelihood ratio (PBLR) tests based on the stochastic logistic and the 
stochastic Gompertz and randomization tests based on the stochastic logistic and stochastic Gompertz. All tests were 
conducted at a nominal significance level of .05 and used 200 bootstrap or randomized samples where appropriate. Each 
estimate was obtained from 1000 trials. For all tests. q = 9. 

PBLR PBLR Randomization Randomization 
h n,, u a (logstic) (Gompertz) (logistic) (Gompertz) 

0 130 0.25 0.5 0.039 0.053 0.041 0.039 
0 100 0.25 I .0 0.05 1 0.039 0.052 0.052 
0 100 0.25 1.5 0.045 0.060 0.050 0.05 1 
0 100 0.50 0.5 0.052 0.029 0.038 0.050 
0 100 0.50 I .0 0.050 0.048 0.048 0.044 
0 100 0.50 1.5 0.046 0.045 0.046 0.039 
0 100 0.75 0.5 0.04 1 0.045 0.035 0.042 
0 100 0.75 1 .0 0.049 0.045 0.063 0.059 
0 100 0.75 1.5 0.056 0.047 0.052 0.044 
0 100 1.OO 0.5 0.046 0.055 0.040 0.049 
0 100 1 .OO 1 .0 0.065 0.050 0.043 0.042 
0 100 1 .OO 1.5 0.054 0.040 0.039 0.052 

-0.01 -alh 0.25 0.5 0.104 0.101 0.086 0.084 
-0.01 a l h  0.25 I .0 0.362 0.354 0.304 0.290 
-0.01 a l h  0.25 1.5 0.759 0.742 0.699 0.692 
0 . 0 1  -a/h 0.50 0.5 0.152 0.1 12 0.104 0.092 
0 . 0  1 -a/h 0.50 1.0 0.424 0.399 0.322 0.270 
0 . 0  I -a/h 0.50 1.5 0.807 0.608 0.682 0.665 
-0.01 a l h  0.75 0.5 0.191 0.121 0.106 0.103 
0 . 0 I a / h  0.75 1.0 0.494 0.269 0.333 0.250 
0 . 0  1 a l h  0.75 1.5 0.775 0.458 0.675 0.42 1 
0 . 0  1 -alh 1 .OO 0.5 0.237 0.131 0.107 0.095 
0 . 0 1  -alh 1.OO I .0 0.562 0.220 0.336 0.188 
-0.01 a l h  1.OO 1.5 0.788 0.298 0.629 0.308 

* The model is Y, = a t hN, , + mZ,. where N, is population abundance at time t ,  Y,= In(N,/N,,,), Z, - normal(0, I). and 
t = I . 2  , . . . , q. 

intrinsic effect of looking for density dependence with logistic model, particularly with modifications for sec- 
a model of log-density dependence. ond-order lags (Eq. 6), have reported pervasive evi- 

Of course, one could just as easily take the Gompertz dence of density dependence (Turchin 1990. Turchin 
as the "true" model in the simulations. The logistic. et al. 199 1, Benyman 199 la).  Some of these results 
though, is fundamentally a nonlinear dynamic model are probably influenced by the properties of the re-
and possesses a wider range of dynamic behaviors (such gression-based statistical testing methods they used. As 
as limit cycles and chaos). The Gompertz is funda- we have noted, the t and Fstatistics for testing whether 
mentally a linear dynamic model (see Eq. 9) and there- slope parameters are zero in Eq. 6 d o  not have t or  F 
fore has a restricted repertoire of dynamic behaviors. distributions. Our  simulations indicate that the Type 
The logistic would seem a more flexible choice for I error rates in one-sided tests of first- o r  second-order 
modeling the dynamic behavior of natural populations. lags using Student's t distributions are markedly in- 
and we have therefore centered our investigations flated over the nominal rate of 0.05 (Table 8). Users 
around statistical properties arising from the logistic. of such tests will find density dependence too often 

Some investigators using Gompertz-based methods when it in fact is weak or  absent. Extensions of the t 
have concluded that density dependence is frequently and Ftests  to  multispecies versions of the logistic (Ber- 
weak and not as widely prevalent as  theoretical ecol- ryman 1991b) must be called into question as well, 
ogists might expect (den Boer and Reddingius 1989, until such tests receive further study. In addition. the 
den Boer 1990). Without extensive logistic-Gompertz regression-based, two-sided test for a first-order lag has 
model evaluations and analyses using many data sets, inflated Type I error rates for some parameter values 
it is not clear whether their results arise from nature (Table 8). The regression-based, two-sided test for a 
o r  from increased Type I 1  error rates inherent in the second-order lag appears to  possess reasonable Type I 
Gompertz-based statistical methods. The low power error rates (Table 8). It is noteworthy that the inves- 
of such methods has been acknowledged (Vickery and tigators have tended to use the two-sided regression 
Nudds 199 l), though not explained. We speculate that test for second-order lags. Thus, their results concern- 
searching for density dependence with a model of log- ing the prevalence of second-order lags might hold up 
density dependence might be akin to  trying to photo- when the data are analyzed with techniques that have 
graph a distant bird with a wide-angle instead of a received thorough evaluation. 
telephoto lens. The  PBLR procedure can be adapted to test for sec- 

On the other hand, investigators using the stochastic ond-order lags. Such a test provides a check on the 
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Markov assumption implicit in the stochastic logistic 
model. One would use Model 2 (Eq. 1) as the null 
hypothesis and the second-order lag model (Eq. 6 with 
h,. h,. . . . set to zero) as the alternate hypothesis. The 
test is conditioned on n,, and n , ,  so the M L  estimates 
for the null hypothesis are based on the time series 
starting with n , .  The likelihood function for the alter- 
nate hypothesis is a product of conditional normal pdf s 
of the form p(.v, I .v ,  ,,s,-,),because X, conditioned on 
s, , and s,,has a n o r m a l ( s ,  , + a + b, exp(x-, ,) + 
bz e x p ( s , , ) ,  o') distribution. It can be shown that the 
ML estimates of a ,  h , ,  and h, are the least squares 
estimates obtained by performing a multiple linear re- 
gression of J: on n, , and n,-,. The bootstrap data sets 
would be obtained from the estimated null hypothesis 
model, and bootstrap values of the LR statistic would 
be obtained by fitting both models to each bootstrap 
data set. A study of the power properties of this test is 
in progress. 

What is the ecological interpretation of rejecting 
Model 1 in favor of Model 2? Essentially, the outcome 
results when the data contain sufficient information to 
estimate an additional parameter, That b, 
imparts an ergodic behavior to  the model (when h is 
negative): large populations tend to decline, and small 
popu~ations tend to increase. ~ ~2 thus quantifies d ~ l 
a return tendency in the data. The return point of the 
population is -a/h; this represents the population 
abundance at  which the average change in In N,.con-
ditional on Nli, , , is zero (Eq. 5). Failure to reject Model 
1 can occur when the return point. if one exists, is 
simply too large or too small to be estimated (out of 
the range of the data). According to Model 1, a "den- 
sity-vagueness" (Strong 1986a, h)  prevails over the 
range of the data. Note that for a growing population, 
it might only be a matter of time before the return 
point can be estimated. Similarly, a population declin- 
ing toward the return point a t  first also resembles Mod- 
el 1. 

The return point, -a/b, is not a n  equilibrium. The 
"equilibrium" of the discrete time stochastic logistic 
model is not a point; rather, it is a long-term stationary 
probability distribution of population sizes. Wolda 
(1 989. 199 1) has questioned the meaning of density 
dependence tests that rely on high densities being above 
and low densities being below an "equilibrium," be-
cause of the impossibility of separating "fluctuating 
equilibrium values" from "fluctuating deviations from 
those equilibrium values" (Wolda 199 1). Indeed, it is 
not likely that any statistical method will be able to  
distinguish these mechanisms of fluctuation from time 
series data alone. The model (Eq. 1) instead accom- 
modates both of these mechanisms; the noise repre- 
sented by Z, describes in a phenomenological fashion 
a population's growth rate fluctuating for whatever rea- 
sons. Once noise is admitted, an ecological Rubicon 
of sorts is crossed: there no longer is a point equilib- 
rium, conceptually, mathematically, o r  empirically. It 
is not correct to claim that a point equilibrium may 

TABLE8. Estimated sizes ofdensity dependence tests in which 
the critical percentiles of the test statistics are taken from 
Student's t distributions used in regression analysis. Each 
estimate was obtained from 1000 trials; all tests were con- 
ducted at a nominal significance level of .05. 

First-order lag* Second-order lag? 

Two- Two-
u a One-sided sided One-sided sided 

0.25 0.5 0.1 10 0.076 0.091 0.054 
0.25 1.0 0.064 0.047 0.077 0.035 
0.25 1.5 0.052 0.05 1 0.073 0.046 
0.50 0.5 0.158 0.107 0.088 0.052 
0.50 1.0 0.105 0.075 0.080 0.034 
0.50 1.5 0.077 0.064 0.063 0.032 
0.75 0.5 0.227 0.141 0.088 0.041 
0.75 1.0 0.136 0.094 0.086 0.049 
0.75 1.5 0.095 0.069 0.063 0.035 
1.00 0.5 0.258 0.162 0.078 0.041 
1.00 1.0 0.173 0.122 0.076 0.048 
1.00 1.5 0.1 15 0.088 0.057 0.031 

* The base model is Y, = a + hhr ,, + uZ,.where N, is pop- 
ulation abundance at time t ,  Y, = ln(A',IN,-,), Z, - nor-
mal(O,l), and t = 1. 2. . . . , q. Null hypothesis is H I :  h = 0. 
one-sided alternate hv~othesis is H,: h < 0. and two-sided 
alternate hypothesis is^^: h # 0. F& all simulations, h = 0. 
no = 100, and q = 9. Critical percentiles were obtained from 
a Student's r distribution with q - 2 df. 

t Thebasemodel is y, = a + h , ~ , - ,  + u ~ , ,+ b,hr, where 
r = 2, 3. . . . , q + I .  Null hypothesis is H,,:h, = 0, one-sided 
alternate hypothesis is H I :  h1 < 0. and two-sided alternate 
hypothesis is H I :  h2 # 0. For all simulations. h, = 0. 
hl = -0.01, = a , b ,  and = 5. critical percentiles were 
obtained from a Student's r distribution with q 3 df. -

emerge as a result of density dependence analyses (Ber- 
ryman 199 1 a).  Wolda (1 989) has stated it well: "Equi- 
librium is not a point but a cloud of points." The 
stationary distribution of the stochastic logistic model 
can be approximated by a positively skewed distri- 
bution known as a gamma distribution (Dennis and 
Patil 1984, Dennis 19896). Some ecological ramifica- 
tions of this concept of a stochastic equilibrium have 
been discussed elsewhere (May 1974, Dennis and Patil 
1984. Dennis and Costantino 1988. Dennis 19896, De- 
sharnais et al. 1990, Costantino and Desharnais 199 1, 
Kemp and Dennis 1993). 

Investigators must carefully distinguish the statisti- 
cal hypothesis of density dependence (as exemplified 
by Model 2) from the ecological hypothesis (biological 
mechanism of negative feedback on growth rate). Anal- 
yses of time series data have all the pitfalls of any 
observational studies. Other stochastic mechanisms 
with stationary distributions. such as  a series of in- 
dependent, identically distributed population sizes 
drawn from some statistical distribution, are better de- 
scribed by Model 2 (and similar models such as the 
stochastic Gompertz) than Model 1 or Model 0 (Wolda 
and Dennis 1993). Indeed. if h = - 1 in the stochastic 
Gompertz (Eq. 8), then population sizes arc> indepen- 
dent, identically distributed lognormal random vari- 
ables. Quantities such as  annual rainfall and spring 
snowpack levels thus qualify as "density dependent" 
under statistical tests (see Wolda and Dennis 1993). 
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but it is questionable whether ecologists would con-
sider such quantltles to be density dependent in an 
ecological sense. We believe the PBLR test can be a 
useful component of a case for ecological density de- 
pendence. but should not be the sole component. 

One important application of density dependence 
testing is in conservation biology. A critical question 
is how to estimate population trends and properties of 
the first-passage distribution from time series data (e.g., 
Dennis et al. 1991). The first-passage distribution is 
the probability distribut~on of the time it will take for 
a stochastic process (population size) to first attain some 
lower (or higher) value. Properties of Interest include 
the mean time to reach a lower value and the proba- 
bility of reaching it before reaching a given hlgher val- 
ue. Preliminary evidence indicates that estimates of 
first-passage properties can vary substantially depend- 
ing on whether o r  not a density dependent model is 
used (Ginzburg et al. 1990, Stacey and Taper 1992). 
The PBLR test represents a potentially valuable aid to 
deciding whether o r  not to account for density depen- 
dence in population viability analysis. 
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