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Abstract

I evaluated the predictive ability of statistical models obtained by applying seven

methods of variable selection to 12 ecological and environmental data sets. Cross-

validation, involving repeated splits of each data set into training and validation subsets,

was used to obtain honest estimates of predictive ability that could be fairly compared

among methods. There was surprisingly little difference in predictive ability among five

methods based on multiple linear regression. Stepwise methods performed similarly to

exhaustive algorithms for subset selection, and the choice of criterion for comparing

models (Akaike’s information criterion, Schwarz’s Bayesian information criterion or F

statistics) had little effect on predictive ability. For most of the data sets, two methods

based on regression trees yielded models with substantially lower predictive ability.

I argue that there is no �best� method of variable selection and that any of the regression-

based approaches discussed here is capable of yielding useful predictive models.
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I N T R O D U C T I O N

Building statistical models of a response as a function of

multiple explanatory variables is a common exercise in

ecology. Such models serve a variety of purposes, including

prediction of responses for new cases (Leigh et al. 2008);

risk estimation (Gerritsen et al. 1996); understanding, or at

least forming hypotheses about, cause-and-effect relation-

ships (Knick & Rotenberry 1995); and constructing

parsimonious models of spatial or temporal correlation

of response values (Hoeting et al. 2006; Lee & Ghosh

2009).

Many criteria are available for the statistical comparison

of multiple-variable models. Recently, information-theoretic

criteria such as Akaike’s information criterion (AIC) and

Schwarz’s Bayesian information criterion (BIC) have gained

favour among ecologists (Burnham & Anderson 2002;

Hobbs & Hilborn 2006; Ward 2008). Some of the appeal of

these approaches seems to be based on their independence

from the hypothesis-testing framework of frequentist

statistics. Mazerolle (2006), for example, writes that the

AIC ��is remarkably superior in model selection (i.e. variable

selection) than hypothesis-based approaches’’, and Lukacs

et al. (2007) comment that ��exploratory data analysis based

on null hypothesis testing methods such as stepwise

selection simply removes thought from data analysis’’.

The oldest algorithms for selecting explanatory variables

are stepwise procedures, in which candidate predictors are

screened for possible inclusion and variables already in the

model are considered for possible removal in a sequential

fashion. More modern algorithms involve exhaustive

searches of many more subsets of predictors than are

usually evaluated in stepwise procedures, leading some

ecologists to doubt the usefulness of stepwise variable

selection. Whittingham et al. (2006), for example, bemoan

the widespread use of stepwise procedures in ecological and

behavioural journals, given the well-established �biases and

shortcomings of stepwise multiple regression�, and Mundry

& Nunn (2009) �follow others in recommending that

biologists refrain from applying these methods�.
Many authors have discussed and evaluated different

methods of variable selection (e.g. see Olden & Jackson

2000; Sauerbrei et al. 2007; Ward 2008; Lee & Ghosh 2009).

Raffalovich et al. (2008) provide an excellent review of work

done in this area. Simulation is the only approach in which

the �true� model can be known, but the conclusions from

simulation studies are very dependent on the ways that

data are generated in the simulations and the measures that
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are chosen for comparison of different model-building

techniques. Murtaugh (1998), for example, found that

approaches based on F tests, Mallows� Cp, and the BIC

had similar frequencies of correct decisions about inclusion

or exclusion of explanatory variables. Regression-tree

approaches were markedly inferior to the regression-based

methods, but Murtaugh (1998) questioned the validity of the

comparison, given that the data were simulated according to

a linear regression model.

Here I examine the performance of seven methods of

variable selection applied to 12 data sets that were

obtained, opportunistically, from the literature and from

colleagues. As there are no known �true� models of

responses as functions of explanatory variables, I used

cross-validation to obtain honest estimates of predictive

ability that can be fairly compared among different

methods of variable selection. This approach avoids the

arbitrariness of choosing an algorithm to generate data in

simulation studies, but it produces results of unknown

generality, as the data sets used are a select subset of the

enormous variety of data sets to which variable-selection

techniques are applied in practice.

Approaches to variable selection

Multiple linear regression is a familiar way of modelling a

quantitative response variable as a function of multiple

explanatory variables. Approaches to selecting variables for

inclusion in the model from a pool of candidate predictors

include:

(1) Stepwise procedures, in which some quantitative

criterion is used to compare regression models with

and without a particular predictor, and sequential

addition and/or deletion of explanatory variables

continues until a stopping point based on the value

of the criterion is reached; and

(2) All subsets, or exhaustive, variable selection, in which

the set of all possible groupings of explanatory

variables is searched and subsets of predictors giving

the most favourable values of the quantitative criterion

are identified.

The criteria that are used to compare regression models

include:

1. P-values from extra-sum-of-squares F tests. To com-

pare models with and without a particular predictor, we

compute

F � ¼ SSE without � SSE with

d.f. without � d.f. with

� SSE with

d.f. with

; ð1Þ

where SSE is the error, or residual, sum of squares, and d.f.

is the number of residual degrees of freedom. The P-value is

then obtained by comparing F * to an F distribution with

the corresponding numerator and denominator degrees of

freedom. In the case of a quantitative predictor, F * is the

square of the t statistic for that predictor in the regression

output.

(2) Akaike’s information criterion. For a regression model

with Gaussian errors, this statistic can be written

(Ramsey & Schafer 2002, p. 356):

AIC ¼ n logðMSEÞ þ 2p; ð2Þ

where n is the number of observations, p is the number of

regression coefficients and MSE is the mean square error,

equal to the residual sum of squares divided by its degrees of

freedom (n)p).

(3) Schwarz’s BIC. For regression with Gaussian errors,

this can be written (Ramsey & Schafer 2002, p. 356):

BIC ¼ n logðMSEÞ þ p log n: ð3Þ

Notice how all three of these statistics balance explained

variation against the number of predictors in a model: as the

number of explanatory variables increases, the residual sum

of squares decreases, but a penalty for model complexity

increases (reflected in the values of p and the residual

degrees of freedom).

Classification and regression trees provide a method of

model building that is very different from the regression

approaches discussed above (Breiman et al. 1984; De’ath

& Fabricius 2000). Starting with a �root� corresponding to

the whole data set, the method produces successive splits

of the data set based on values of the explanatory

variables. For quantitative predictors, at each level of the

tree, the approach considers all possible binary splits of

the predictors, with each split leading to a pair of

predicted responses equal to the response means in the

two groups created by the split. A bifurcation is created

for the predictor and cutpoint that lead to the smallest

deviance, or sum of the squared differences

between observed and predicted responses. This proce-

dure is repeated recursively to produce a branching tree

of binary splits based on one or more of the explanatory

variables.

Unlike the linear regression approaches, the regression

tree is not based on a statistical model that can be used to

quantify the trade-off between model complexity and

explained variation. Instead, model selection is accom-

plished by �pruning� overly complicated trees back to

simpler trees that will presumably have greater generality.

A commonly used approach involves cross-validation, in

which, over multiple iterations, a tree based on all but a

small subset of the data is used to predict responses for

the �validation� subset (e.g. see Therneau & Atkinson

1997).
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M E T H O D S

The data sets

Twelve data sets were obtained by searching literature and

on-line sources, and by making enquiries among colleagues.

The goal was to find ecological or environmental data sets

that included quantitative variables, at least one of which

could be considered as a �response� predictable by the

others. Table 1 presents some features of the data sets,

which are described in more detail in Appendix S1 and are

available from the author upon request.

Variable selection

The variables in each data set were examined individually

prior to model fitting. Response variables and predictors

with extreme skewness were log-transformed to reduce the

chance that variable selection would be strongly influenced

by a few extreme observations. I then applied seven

methods of variable selection and tree building that I

automated in R (R Development Core Team 2007). In the

regression modelling, interactions between predictors were

not included in the pool of explanatory variables.

It should be emphasized that automatic selection of

variables is not good statistical practice; an iterative and

interactive approach is much more likely to yield useful

models (Chatfield 2002). Among other things, automating

the process makes it difficult to consider the proper

functional forms of predictors, possible spatial and temporal

correlation of observations, and interactions and collinearity

among explanatory variables.

The methods of model fitting are as follows.

(1) Stepwise variable selection with F tests (Efroymson’s algorithm).

P-values are obtained by comparing models with and

without a particular explanatory variable with an extra-

sum-of-squares F test (eqn 1). In this paper, I use P ¼
0.05 as the threshold for inclusion or exclusion of

predictors; different values of P would lead to different

levels of model complexity. Starting with a model

having no predictors, we repeat the following steps: (i)

for the predictors not in the model, add the one having

the smallest, statistically significant �P to enter�, and (ii)

if any of the predictors in the model now have a

nonsignificant �P to stay�, drop the one with the largest

P-value. The procedure ends when all of the variables

in the model, and none of those outside the model,

have P<0.05.

(2) Stepwise variable selection using AIC. Starting with a model

having no predictors, we repeat the following steps: (i)

for the predictors not in the model, add the one leading

to the largest reduction in the AIC (eqn 2), and (ii) if

any of the predictors in the model lead to a reduction in

the AIC when dropped, remove the one producing the

largest reduction. The procedure ends when there are

no further variable additions or deletions that can lower

the AIC.

Table 1 Description of the data sets. R2 is the coefficient of determination for a model containing all of the candidate predictors. The

condition index is a measure of collinearity of the predictors (Belsley et al. 1980). Appendix S1 has more details about the data sets

Label Description

No. of

observations

No. of

predictors R2

Cond.

index

A Chlorophyll a in north-eastern U.S. lakes, predicted from water chemistry 348 10 0.67 102

B Bird species richness around north-eastern U.S. lakes, predicted from lake and

watershed characteristics

185 8 0.22 32

C Species richness of native fish in north-eastern U.S. lakes, predicted from watershed

characteristics and lake biota

194 8 0.48 26

D Seed production by weedy rice, predicted from plant morphology 356 7 0.96 84

E Wave height in the Pacific Ocean, predicted from weather variables 335 7 0.94 585

F Faecal coliform bacteria in Oregon rivers, predicted from water chemistry 77 8 0.32 121

G Biochemical oxygen demand in the Deschutes River, predicted from flow, water

chemistry and temperature

26 8 0.58 126

H Sleep duration for mammal species, predicted from life-history characteristics, weight

and exposure

51 7 0.70 29

J Human population density in stream watersheds, predicted from watershed

characteristics

310 7 0.33 44

K Secchi depth in mid-Atlantic estuaries, predicted from water temperature and

chemistry

870 8 0.25 180

L Abundance of caddisfly larvae in an Oregon stream, predicted from local stream and

substrate characteristics

311 5 0.27 23

M Zooplankton species richness in North American lakes, predicted from area, depth,

elevation and proximity to other lakes

66 8 0.64 29
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(3) Stepwise variable selection using Schwarz’s BIC. As in (2), but

with the BIC (eqn 3).

(4) All subsets using the AIC. The R function �regsubsets�
identifies the best subsets of predictors using a branch-

and-bound algorithm (Miller 2002). I ranked the

subsets according to their values of the AIC, and

chose the subset having the minimum value.

(5) All subsets using the BIC. As in (4), except that rankings

are based on the BIC.

(6) Regression trees pruned by the 1-SE rule (Breiman et al.

1984). I used functions in R’s �rpart� package (Therneau

& Atkinson 1997) to fit regression trees, which were

then pruned back to avoid overfitting. The pruning

algorithm uses cross-validation to identify trees with

small values of a risk measure that balances explained

variation against tree complexity. The 1-SE rule

chooses the simplest tree having risk that is within 1

standard error of the achieved minimum.

(7) Regression trees pruned to the minimum risk. As in (6), except

that the pruned tree with the minimum risk is chosen.

This introduces some randomness into tree selection

that the 1-SE rule, above, seeks to avoid, but it also

provides a less aggressive pruning method for com-

parison with the previous method.

Cross-validation

The predictive ability of each method applied to a particular

data set was estimated using cross-validation (e.g. see Harrell

2001, p. 93). For each data set, the following steps were

repeated 2000 times.

(1) Randomly divide the data set into a training subset

consisting of about 75% of the observations and a

validation subset consisting of the remaining 25% of

the observations.

(2) For each variable-selection method, use the method to

build a predictive model based on the training data.

(3) Apply the model obtained in step 2 (regression

coefficients or regression tree) to the explanatory

variables for observations in the validation subset to

predict responses for the validation subset. Compute

the cross-validation mean squared prediction error:

MSPE ¼
Pn�

i¼1ðYi � ŶiÞ2

n�
;

where Yi is the observed response for item i; Ŷi is the

response predicted by the model based on the training data,

and the sum is over the n* observations in the validation

subset. In cases where no variables were selected for a

particular set of training data, the mean of the responses in

the training data was used as the predicted response for all

items in the validation subset.

For each data set and variable-selection method, the 2000

values of the cross-validation MSPE were averaged to give

an overall summary of predictive ability.

R E S U L T S

An example

Table 2 shows modelling results for data set C, in which the

response is the species richness of native fish in north-

eastern U.S. lakes. I chose this data set because it yields the

largest number of different models, out of the 12 data sets

studied here. The regression-based methods resulted in

three different models, having two, three and four explan-

atory variables. Two more distinct �models� resulted from

the regression-tree approaches.

Figure 1 shows the regression tree obtained with method

7. The first split, which is the only split produced by method

6, indicates that the lakes should first be discriminated on

the basis of area: those with log-transformed area less than

2.88 have a mean log-transformed species richness of 1.41,

and the remaining lakes have a mean response of 2.07.

These subgroups of lakes are then further split according to

their values of the zooplankton, elevation, depth and area

variables. Notice in Fig. 1 that the association of depth with

species richness is negative in the split on the left-hand side

of the tree and positive in the right-hand split. This is an

example of the very flexible �modelling� of the varying

association of a predictor and response over subgroups that

is available with regression trees.

Number of explanatory variables included

Table 3 shows, for each combination of data set and

method, the average number of explanatory variables

included in models fit to the training data sets.

A conspicuous pattern is the generally smaller number of

variables included by the regression-tree methods (6 and 7),

compared to the other methods. However, because a single

predictor can occur at more than one node of a regression

tree (e.g. see lake area in Fig. 1), the comparison of number

of predictors in trees vs. ordinary regression models

provides an imperfect contrast of model complexity.

Figure 2a is a graphical summary of the results presented

in Table 3. On average, methods using the AIC (2 and 4)

yielded the largest models, which is consistent with the

AIC’s relatively small penalty for model complexity. Models

of intermediate size were produced by the methods based

on F-tests (1) and the BIC (3 and 5).

Interestingly, models fit using the all-subsets algorithm

were about the same size as those fit using stepwise

procedures, for both the AIC (4 vs. 2 in Fig. 2a) and BIC (5

vs. 3).
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Predictive ability

Table 4 and Fig. 2b summarize the patterns of MSPE found

in the different combinations of data set and variable-

selection method.

Tree-based vs. regression-based approaches

The two tree-based methods (6 and 7) generally have higher

squared prediction errors than those of the regression-based

methods (1–5), although the pattern is reversed for two of

the 12 data sets (F and G; see Table 4).

Taking a closer look at these two data sets, we see that

both have relatively high condition indices – a measure of the

collinearity of the explanatory variables – and small sample

sizes. High collinearity usually inflates the variability of

regression coefficients and predicted responses, which would

tend to increase the magnitude of squared prediction errors,

especially when the training data sets are small. In such cases,

the more parsimonious models produced by the tree-based

methods may outperform the regression-based approaches,

at least with respect to this measure of predictive ability.

Data set G is an extreme example: in none of the cross-

validations did the tree-based methods select any explanatory

variables, yet the associated MSPEs (equal to the population

variances of the responses in the training data sets) were

usually smaller than those for the regression-based

approaches, which, on average, made use of 1.3 to 3.3

predictors (Table 3).

This is not to say that regression trees without branches

are useful predictive tools. But the pruning algorithms that

resulted in these �root-only� trees are in a sense protection

against the overfitting and variance inflation that can occur

when one fits regression models to small data sets having

relatively large numbers of collinear predictors.

Comparisons among the regression-based approaches

Maybe the most interesting feature of Fig. 2b is the close

similarity of the MSPEs associated with the regression-based

approaches (1–5). In spite of the larger number of

predictors included by the AIC-based methods (2 and 4),

compared to the F-test and BIC-based methods (1, 3 and 5;

see Fig. 2a), the mean predictive abilities of all five methods

were nearly identical.

D I S C U S S I O N

Applied to the 12 data sets in this paper, the five regression-

based methods of variable selection produced models with

very similar predictive ability, while the performances of the

two tree-based methods were usually inferior (Fig. 2b).

There was surprisingly little difference between stepwise and

all-subsets approaches (methods 4 vs. 2, and 5 vs. 3) with

respect to either model size (Fig. 2a) or predictive ability

(Fig. 2b). These results contrast with some ecologists�
assertions about the shortcomings of stepwise procedures

(e.g. see Whittingham et al. 2006; Mundry & Nunn 2009).

As expected, the models with the largest number of

predictors were obtained with the two AIC-based methods

Table 2 Results of applying the seven variable-selection techniques to data set C, predicting species richness of native fish in north-eastern

U.S. lakes. Lake area was log transformed; chlorophyll a, the number of non-native species, and the response received the log(y + 1)

transformation. Entries for the predictors are regression coefficients for the variables included in the model, or, for regression trees (methods

6 and 7), the direction of the �effect� of the predictor on the response (see Fig. 1, and discussion in text). The value of the cross-validation

mean squared prediction error (MSPE) reported for models 2, 4 and 5 is the average over the three methods

Method Lake

area (ha)

Elev.

(m)

Mean

depth (m)

Chl. a

(lg L)1)

No. of non-

native fish sp.

Total

zoopl. indiv.

Cross-val.

MSPE

1 0.180 )0.00125 0.0811 0.187

2, 4, 5 0.198 )0.00133 0.0884 )0.0996 0.185

3 0.168 )0.00131 0.185

6 + 0.226

7 + +/) + 0.214

Figure 1 Regression tree for predicting species richness of native

fish in north-eastern U.S. lakes (data set C), using the minimum-

risk criterion (method 7). The numbers in the ovals ( �nodes� ) and

rectangles ( �leaves� ) give the means of the log (number of species)

for lakes with different combinations of predictor values,

determined by splits higher in the tree. The tree chosen by the

1-SE rule (method 6) has just the single, initial split based on log

(area).
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(Fig. 2a). As the predictive ability of these models was not

markedly better than that of models produced by

approaches based on F-tests and the BIC (Fig. 2b), the

choice among variable-selection techniques must be guided

by other considerations. For example, one can weigh the

relative costs of the different kinds of mistakes that can be

made in model building: including a predictor that is truly

uninformative, or excluding one that is in fact informative

(Murtaugh 1998). Depending on which kind of mistake is

more costly or consequential, one might prefer a more

conservative (F-test or BIC-based) or more liberal (AIC-

based) method of variable selection.

As many statisticians have pointed out, it is difficult or

impossible to interpret the P-values for the explanatory

variables in a regression model that was obtained by

winnowing a multitude of other possible models, as those

P-values do not account for the so-called model selection

uncertainty (e.g. see Miller 2002; Ramsey & Schafer 2002).

Some authors have consequently denigrated the use of

F tests in variable selection (e.g. see Burnham & Anderson

2002; Mundry & Nunn 2009). But the F statistic can

nevertheless be a useful currency for expressing the trade-

off between explained variation and model complexity. In

fact, the F-to-enter, the adjusted R2 and the AIC can all be

viewed as special cases of a generalized form of Mallow’s Cp

statistic (Miller 2002, p. 205).

As an example, consider the various models obtained for

data set C, predicting species richness of native fish in

north-eastern U.S. lakes (Table 2). Applying stepwise

selection (method 1) with a P-to-enter and P-to-stay of

0.05, we obtain the three-variable model shown in the first

Table 3 Mean numbers of variables included in models produced

by the seven methods applied to the 12 data sets (see Table 1 for

the correspondence between letters and data sets). Each entry is

the average number of predictors in models fit to the training data

in 2000 random splits. This is an imperfect summary of the

complexity of regression trees, in which a single explanatory

variable may be used at more than one level of the tree. Methods:

1, stepwise F tests; 2, stepwise Akaike’s information criterion

(AIC); 3, stepwise Bayesian information criterion (BIC); 4, all

subsets AIC; 5, all subsets BIC; 6, tree with 1-SE rule; 7, tree with

minimum risk

Data set

Method

1 2 3 4 5 6 7

A 3.2 4.1 3.0 4.9 3.1 1.1 2.2

B 2.8 3.4 2.5 3.4 2.6 0.4 1.6

C 2.5 3.5 2.3 3.5 2.3 1.5 2.5

D 2.1 2.9 1.6 3.1 1.6 1.0 1.0

E 4.8 5.6 4.4 5.5 4.4 2.2 2.3

F 1.6 2.1 1.5 2.0 1.5 0.8 1.5

G 1.3 3.3 2.2 3.3 3.2 0.0 0.0

H 2.4 3.4 2.5 3.3 2.6 1.0 1.4

J 4.8 6.1 4.1 6.1 4.2 1.1 2.8

K 3.0 3.1 2.8 3.2 2.8 1.8 4.0

L 3.5 3.9 2.9 3.9 2.9 2.2 3.3

M 1.9 2.2 1.9 2.2 1.9 0.9 1.7

Method
M

ea
n 

no
. o

f v
ar

ia
bl

es

1 2 3 4 5 6 7
0.5

1.0

1.5

2.0

2.5
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3.5

4.0

Method

S
ta

nd
ar

di
ze

d 
M

S
P

E

1 2 3 4 5 6 7

−1

0

1

2

(a)

(b)

Figure 2 Summary statistics for the seven methods, averaged over

data sets: (a) mean number of predictors per model (see the

comment about regression trees in the legend of Table 3); and (b)

mean value of the cross-validation mean squared prediction error

(MSPE), standardized as described in the legend of Table 4. The

vertical lines are 95% confidence intervals based on the mean

square error (MSE) from linear models of the responses as a

function of method and data set: �y � t0:975;66 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE=12

p
.
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line of Table 2. If we instead use a threshold of 0.01, we

obtain the same two-variable model that was produced by

method 3. Finally, using a threshold of 0.10, we obtain the

four-variable model produced by methods 2, 4 and 5. Rather

than a liability from the rigid framework of hypothesis

testing, the F-test significance level can be thought of as a

tuning parameter that adjusts the penalty for model

complexity in a way that is not possible using the AIC or

BIC alone (e.g. see Sauerbrei et al. 2007). In this context,

it seems unfair to dismiss stepwise variable selection with

F-tests as a viable tool for model selection, just because it

uses the machinery of hypothesis testing (Whittingham et al.

2006; Lukacs et al. 2007).

It is important to remember that the comparisons among

variable-selection methods that are summarized here are

based on predictive ability; if the goal of model building is

explanation or identification of possible causal relationships,

the criteria for comparing approaches could be different

from those considered here (Sauerbrei et al. 2007).

Another caveat is that the use of real, rather than

simulated, data makes it difficult to identify the relevant

scope of inference for this work. The 12 data sets were

identified in a decidedly non-random way, and it is possible

that special or unusual features of these data had a strong

influence on the results. Additional effort could be directed

to finding more data, which could be helpful in identifying

features of data sets that make them more or less

amenable to the different model-building techniques. But

it is hard to envision a method of sampling data sets that

would permit generalization of results to an identifiable

larger population.

Simulation, in which the �true� model is known, would seem

the only definitive way to compare model-building tech-

niques. Investigators have simulated data in so many different

ways and used such a variety of metrics for comparing

methods that it is difficult to synthesize their results, although

Raffalovich et al. (2008) make a determined attempt. In their

own research, Raffalovich et al. (2008) evaluated the ability of

several procedures to include important variables and exclude

irrelevant ones. They found that stepwise regression and BIC-

based approaches performed best, while AIC-based methods

�are clearly inferior and should be avoided�. Murtaugh (1998),

on the other hand, found little difference in the discriminating

ability of methods based on F-tests, the BIC and Mallows� Cp

(similar to the AIC), consistent with the empirical results

reported here.

The variety of models that can be obtained for individual

data sets (e.g. see Table 2) and the similar predictive ability

achieved by some fairly different methods of variable

selection (Fig. 2b) suggest that there is no �best� method of

selecting statistical models. This conclusion is consistent

with the frequently quoted assertion that �all models are

wrong but some are useful� (Box 1979). If there is no

�correct� model, there can be no best method of model

building.

Single-minded promotion of one method of variable

selection over another places undue emphasis on purely

statistical considerations, a practice that some authors have

grown weary of (Guthery et al. 2005; Murtaugh 2007;

Chamberlain 2008). There is a wide array of approaches to

variable selection, any of which can generate models worthy

of consideration in a particular application. Which models

Table 4 Standardized mean values of mean squared prediction error (MSPE) based on cross-validation for the seven methods applied to the

12 data sets (see Table 1 for the correspondence between letters and data sets). In each row, the mean MSPEs were standardized by

subtracting the mean (column 2) and dividing by the standard deviation (column 3). Methods: 1, stepwise F tests; 2, stepwise Akaike’s

information criterion (AIC); 3, stepwise Bayesian information criterion (BIC); 4, all subsets AIC; 5, all subsets BIC; 6, tree with 1-SE rule; 7,

tree with minimum risk

Data set Mean MSPE SD of MSPE

Standardized MSPE by method

1 2 3 4 5 6 7

A 2.44 0.186 )0.67 )0.44 )0.67 )0.44 )0.67 1.57 1.34

B 0.420 0.0428 )0.62 )0.73 )0.30 )0.73 )0.51 1.47 1.42

C 0.357 0.0597 )0.55 )0.61 )0.55 )0.61 )0.55 1.78 1.08

D 0.291 0.0764 )0.60 )0.58 )0.57 )0.57 )0.59 1.60 1.31

E 12.3 2.67 )0.57 )0.59 )0.58 )0.60 )0.58 1.56 1.36

F 1.18 0.123 0.25 0.58 0.39 0.49 0.82 )0.46 )2.08

G 0.348 0.0146 0.21 0.68 0.49 0.79 0.71 )1.42 )1.45

H 0.240 0.139 )0.45 )0.60 )0.60 )0.60 )0.67 1.53 1.38

J 0.0761 0.0243 )0.56 )0.80 )0.40 )0.80 )0.31 1.48 1.40

K 0.283 0.0143 )0.59 )0.52 )0.45 )0.31 )0.38 2.22 0.03

L 37270 2105 )0.58 )0.79 )0.23 )0.86 )0.16 1.94 0.68

M 0.195 0.0171 )0.60 )0.55 )0.60 )0.53 )0.59 1.75 1.12
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are most useful is determined not by the method by which

they were obtained, but rather by their appropriateness for

the task at hand.
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