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ABSTRACT
We describe a novel approach to the mathematical modeling

and computational simulation of fully three-dimensional, electro-
magnetically and thermally driven liquid-metal flow. The phe-
nomenon is governed by the Navier-Stokes equations, Maxwell’s
equations, Ohm’s law, and the heat equation, all nonlinearly cou-
pled via Lorentz and electromotive forces, buoyancy forces, and
convective and dissipative heat transfer. Employing the elec-
tric current density rather than the magnetic field as the pri-
mary electromagnetic variable, it is possible to avoid artificial or
highly idealized boundary conditions for electric and magnetic
fields and to account exactly for the electromagnetic interac-
tion of the fluid with the surrounding media. A finite-element
method based on this approach was used to simulate the flow of
a metallic melt in a cylindrical container, rotating steadily in a
uniform magnetic field perpendicular to the cylinder axis. Veloc-
ity, pressure, current, and potential distributions were computed
and compared to theoretical predictions.

INTRODUCTION
Electromagnetic stirring of metallic melts is widely used

in the metals processing industry, mostly in order to improve
the solidification structure of casting products. The stirring is
brought about by Lorentz forces, resulting from the interaction of
an applied magnetic field with eddy currents in the melt; those
currents are induced by relative motion between the melt and
magnetic field. A standard technique is to generate a rotating
magnetic field in an inductor surrounding a stationary column
of molten metal; alternatively, the metal may be rotated in a

stationary magnetic field. In any event, qualitative and quanti-
tative understanding of the ensuing flow patterns is of critical im-
portance in achieving optimal stirring conditions. Efficient and
accurate experimental and computational techniques are needed
to measure and to predict velocity, current, and temperature
distributions in the melt. Despite considerable research efforts
over the past three decades, the methodology is still in need of
development. This is due to the complexity of the underlying
flow phenomena, which are, in general, fully three-dimensional,
highly nonlinear, and characterized by the interaction of multi-
ple physical effects (involving hydrodynamics, electrodynamics,
and thermodynamics).
Beginning with Moffatt (1965), numerous researchers have

studied the electromagnetic stirring of round strands of liquid
metal by the rotating-field method; see, for example, Spitzer et
al. (1986), Davidson and Hunt (1987), and Saluja et al. (1990).
Mathematically, these investigations are based on the assump-
tion of a circular-cylindrical geometry and the numerical solution
or asymptotic analysis of the stationary Navier-Stokes equations,
usually in conjunction with a suitable turbulence model, under a
known distribution of time-averaged Lorentz forces. The latter
are determined from an asymptotic solution of the magnetic in-
duction equation under appropriate boundary conditions for the
magnetic field. Many simplifying assumptions are made, and
the analysis depends heavily on the axisymmetry of the problem
(none of the relevant quantities depend on the angular variable).
Heat transfer effects due to temperature fluctuations in the melt
are neglected. Nevertheless, these investigations have provided
valuable insights into the structure of the flow field in a rota-
tionally stirred column of liquid metal. The main finding is that



in addition to a purely azimuthal primary flow in the region sur-
rounded by the inductor, there is a strong secondary flow with
radial and axial components, which reaches far beyond the stir-
rer region. For more experimentally rooted studies of rotational
stirring, involving different geometries and accounting for heat
transfer effects, see, for example, Meyer et al. (1984), Vivès and
Ricou (1985), and most recently, Cho et al. (1999).

The interaction of stationary magnetic fields with moving
metallic melts has been exploited, for example, in connection
with the damping of buoyancy-driven flows during solidifica-
tion (Prescott and Incropera, 1993), but appears to be largely
untested in the context of electromagnetic stirring. Although
based on the same principle, the effect of rotating the melt in a
stationary, transverse magnetic field is quite different from that
of traditional rotational stirring. In particular, the resulting flow
field cannot be expected to be rotationally symmetric; in fact,
the induced flow will be symmetric with respect to the axis of the
magnetic field rather than the axis of rotation (see Figure 3 and
the discussion at the end of Section 3). As a consequence, the
flow is fully three-dimensional, even in the simplest experimental
configuration (cylindrical crucible of circular cross-section, uni-
form magnetic field perpendicular to the cylinder axis, uniform
temperature distribution). Another difference, as compared to
traditional rotational stirring, is the absence of a skin effect. In
the presence of a rotating magnetic field, two distinct magnetic
Reynolds numbers are of relevance, one based on the characteris-
tic velocity of the melt, the other on the angular frequency of the
rotating field; the latter is inversely proportional to the square
of the skin depth. All the above-referenced papers on rotational
stirring of round strands invoke varying assumptions on the rel-
ative size of the two magnetic Reynolds numbers, leading to
low-frequency and high-frequency approximations, respectively.
For a rotating crucible in a stationary magnetic field, these con-
siderations are irrelevant.

The objective of this paper is to present a general approach
to the modeling and simulation of liquid-metal flows, as applied
to the flow of a metallic melt in a circular-cylindrical crucible,
rotating steadily in a uniform magnetic field perpendicular to
the cylinder axis (the axis of rotation). A corresponding experi-
mental apparatus and measurement technique are described in a
companion paper (Bakhtiyarov et al., 1999), elsewhere in these
proceedings. The present analysis differs from earlier work not
only in that it addresses a nontraditional stirring mechanism,
but more importantly, in that it is based on the direct numerical
simulation of the full, nonlinear, three-dimensional, electromag-
netically and thermally coupled flow problem. The mathemat-
ical foundation is a mixed variational formulation and finite-
element discretization of the (stationary) Navier-Stokes equa-
tions, Maxwell’s equations, Ohm’s law, and the heat equation,
coupled via Lorentz and electromotive forces, buoyancy forces,
and convective and dissipative heat transfer. One key feature is
the use of the electric current density (rather than the magnetic
field) as the primary electromagnetic variable; this renders ar-
tificial or highly idealized electromagnetic boundary conditions
obsolete. We refer to Meir and Schmidt (1999b) for mathemat-
ical details and to Meir and Schmidt (1998, 1999a) for prior
applications to electromagnetically driven flows.

Section 1 is concerned with the mathematical model, Sec-
tion 2 with discretization and implementation issues. In Sec-
tion 3 we describe preliminary computational experiments, thus
far limited to the laminar flow regime and not accounting for
temperature fluctuations. Implementation of a turbulence model
and a heat transfer model is the subject of ongoing work.

1. MATHEMATICAL MODEL
We are concerned with the steady flow of a viscous, incom-

pressible, electrically and thermally conducting fluid, confined
to a cylindrical crucible, in the presence of gravity, an applied
magnetic field, and a radiative heat source; see Bakhtiyarov et al.
(1999) for a detailed description of the experimental apparatus.
We assume the presence of a lid on top of the fluid, thus avoiding
the complication of a free surface; also neglected is the thickness
of the crucible walls. The problem is governed by balance equa-
tions for momentum, mass, and energy, along with Maxwell’s
equations and Ohm’s law; see Hughes and Young (1966) for the
physical background.
The momentum balance is given by the stationary Navier-

Stokes equations,

−η∇2V + ρ(V · ∇)V+∇p = F (in the fluid), (1)

whereV is the flow velocity, p the hydrodynamic pressure, F the
sum of all body forces (including buoyancy and Lorentz forces).
The viscosity η is assumed to be constant, while the density ρ is
allowed (at least for now) to vary with temperature. Conserva-
tion of mass is enforced through the continuity equation,

∇ · (ρV) = 0 (in the fluid). (2)

Equations (1) and (2) must be supplemented with a boundary
condition for the fluid velocity. Denoting by V0 the velocity
field associated with the rigid rotation of the crucible, the usual
no-slip condition for viscous fluids requires that

V = V0 (at the walls). (3)

The balance of energy can be written as a scalar convection-
diffusion equation in terms of the temperature T ,

−κ∇2T + ρc(V · ∇)T = H (in the fluid), (4)

where H is the sum of all heat sources (including dissipative
and radiative heating). The thermal conductivity κ and specific
heat c are assumed to be constant (in the relevant temperature
range). As a boundary condition, we assume that the heat flux
across the walls is proportional to the temperature difference
between the fluid and the exterior of the crucible:

−κ(∇T ) · n = γ(T − Text) (at the walls). (5)

Here, n denotes the unit outward normal vector field on the
surface of the fluid region; γ is the (constant) heat transfer co-
efficient of the walls, and Text stands for the given ambient tem-
perature.



The electric current distribution is determined by Ohm’s
law,

J = σ(−∇φ+V ×B) (in the fluid), (6)

along with the continuity equation,

∇ · J = 0 (in the fluid), (7)

where J is the electric current density, φ a scalar electric po-
tential, B the magnetic induction, and σ the (constant) electric
conductivity of the fluid. Since the exterior of the crucible is
assumed to be nonconducting, the obvious boundary condition
for J is that

J · n = 0 (at the walls). (8)

The magnetic field can be decomposed as

B = B0 +B1,

where B0 and B1 represent, respectively, the applied field and
the field induced by the current J. The latter satisfies Maxwell’s
equations,

∇×B1 = µJ

∇×B1 = 0

∇ ·B1 = 0

(in the fluid),

(in the exterior),

(throughout space).

(9)

Since the fluid is heated beyond the Curie point, µ is the mag-
netic permeability of free space (4π · 10−7 H m−1). In addition,
B1 must be continuous across the crucible walls (constant per-
meability, no surface currents!) and vanish at infinity (finite
source!):

[B1] = 0

B1 = 0

(across the walls),

(at infinity).
(10)

For any reasonably regular current distribution J, Equations (9)
and (10) admit a unique solution B1 = B(J), which is given by
the Biot-Savart formula (a volume integral over the fluid region):

B(J) = −
µ

4π

∫
r− s

|r− s|3
× J(s) d3s. (11)

The body force F on the right-hand side of Equation (1)
includes the Lorentz force, J ×B, and the force of gravity, ρg,
where g is gravitational acceleration. We employ the Boussinesq
approximation to account for buoyancy forces due to tempera-
ture gradients; that is, we assume that T fluctuates in a narrow
range about a reference temperature Tref and that the density,
in this temperature range, decreases linearly with T :

ρ

ρref
= 1− β(T − Tref).

Here, ρref and β denote the density and thermal expansion co-
efficient of the fluid at the reference temperature. The force of
gravity is then given by

ρg = ∇pref − βρref(T − Tref)g,

where ∇pref = ρref g is the hydrostatic pressure gradient (at
the reference temperature), while βρref(T −Tref)g represents the
buoyancy force. Summarizing, we have

F = J× (B0 + B(J))+∇pref − βρref(T − Tref)g. (12)

Following standard practice, we now introduce a reduced
pressure, p′ = p− pref , and reduced temperature, T

′ = T − Tref ,
and replace the density ρ in Equations (1), (2), and (4) by ρref .
Also, for notational convenience, we drop the primes in p′ and
T ′ and the subscript in ρref ; that is, from now on, p, T , and
ρ will denote the reduced pressure, reduced temperature, and
reference density, respectively. (Note that Equations (4) and (5)
remain unchanged after this reduction, except that Text must be
replaced by Text − Tref .)
The source term H in Equation (4) comprises dissipative

heating due to electric currents and viscous drag as well as ra-
diative heating due to the presence of heating elements. Thus,

H = σ−1|J|
2
+
1

2
η |∇V + (∇V)tr|

2
+ h, (13)

where h is a given function of position, depending on the charac-
teristics of the heating elements. For the apparatus described in
Bakhtiyarov et al. (1999), the following ansatz seems reasonable:

h(r) = I0χ(r) exp(−αd(r)). (14)

Here, I0 is the output intensity of the quartz lamps, χ(r) an
empirical function describing the intensity distribution in the
light cone, α the absorption coefficient of the fluid (in the rel-
evant frequency range, at the reference temperature), and d(r)
the penetration depth. For any reasonbly regular velocity field
V and current distribution J, Equations (4) and (5), with H
given by (13) and (14), constitute a linear, uniformly elliptic
boundary-value problem of familiar type, which has a unique
solution T = T (V,J). Given V and J, the solution can be
numerically computed in numerous ways, although no explicit
representation is available.
We emphasize that both the induced magnetic field B(J)

(the unique solution of the linear div-curl system (9)–(10)) and
the reduced temperature T (V,J) (the unique solution of the lin-
ear, elliptic boundary-value problem (4)–(5)) are easy to com-
pute, to any desired accuracy, for any given, sufficiently regular
vector fieldsV and J. In what follows, we will therefore focus our
attention on the remaining, coupled, nonlinear boundary-value
problem for the velocity V, current density J, reduced pressure
p, and electric potential φ, as obtained from Equations (1)–(3)
(along with (12)) and (6)–(8):

−η∇2V + ρ(V · ∇)V +∇p = J× (B0 + B(J))− βρT (V,J)g,

σ−1J+∇φ = V × (B0 + B(J)),

∇ ·V = 0 and ∇ · J = 0 (in the fluid),

V = V0 and J · n = 0 (at the walls).

(15)

Note that the above, due to the presence of the operators B
and T , is in fact a system of integro-differential equations (B is a



linear, first-order integral operator, T a nonlinear, second-order
integral operator). As a consequence, some care must be exer-
cised in choosing linearization/iteration schemes for the numer-
ical solution of the discretized equations, in order to avoid the
occurrence of dense matrices (see the following section).

A careful order-of-magnitude analysis was performed to as-
sess the relative importance of the various terms in the equa-
tions. The conclusions, as pertaining to the laboratory condi-
tions described in Bakhtiyarov et al. (1999), can be summarized
as follows (details will be presented elsewhere):

(a) Lorentz forces and inertial forces are of comparable mag-
nitude; both are large compared to buoyancy and viscous forces,
which are roughly comparable.

(b) The induced magnetic field is small compared to the
applied field (but less so for high angular velocities).

(c) Convective heat transfer dominates diffusion (but less so
for small angular velocities). Viscous heating is small compared
to Joule heating; both are negligible compared to diffusion and
convection.

It is therefore feasible to neglect Joule and viscous heating
when computing the temperature distribution. Neglecting tem-
perature fluctuations altogether, that is, setting T (V,J) = 0, is
viable only as a first approximation. The same can be said with
regard to the induced magnetic field B(J).

2. FINITE-ELEMENT DISCRETIZATION
The numerical solution of the boundary-value problem (15)

is based on a mixed variational formulation in the spirit of the
well-known Babuska-Brezzi theory; see, for example, Brezzi and
Fortin (1991). This formulation is obtained by multiplying the
four PDEs by suitable test functionsW (for the velocity),K (for
the current density), q (for the pressure), and ψ (for the electric
potential) and integrating the equations over the fluid region.
The two identities resulting from the momentum balance and
Ohm’s law are added together, and so are the identities result-
ing from the two continuity equations. After some algebra and
several integrations by parts (using the boundary conditions),
one arrives at two equations of the form

a0((V,J), (W,K))+ a1((V,J), (V,J), (W,K))

+ b((W,K), (p, φ)) = f((V,J), (W,K)),
(16)

b((V,J), (q, ψ)) = 0, (17)

where a0 (a bilinear form), a1 (a trilinear form), and b (a bilinear
form) are given by

a0((W1,K1), (W2,K2))

= η

∫
(∇W1) · (∇W2) + σ

−1

∫
K1 ·K2

+

∫
((K2 ×B0) ·W1 − (K1 ×B0) ·W2),

a1((W1,K1), (W2,K2), (W3,K3))

=
ρ

2

∫ (
((W1 · ∇)W2) ·W3 − ((W1 · ∇)W3) ·W2

)

+

∫ (
(K3 × B(K1)) ·W2 − (K2 × B(K1)) ·W3

)
,

and

b((W,K), (q, ψ)) = −

∫
(∇ ·W) q +

∫
K · (∇ψ),

while f (a nonlinear forcing term) is given by

f((W1,K1), (W2,K2)) = −βρ

∫
T (W1,K1)g ·W2.

Under mild assumptions on the data, solving the original
boundary-value problem (15) is equivalent to finding vector fields
V and J and scalar fields p and φ such that (a) V = V0 on the
boundary of the fluid region and (b) Equations (16) and (17)
are satisfied for all relevant test functionsW, K, q, and ψ. The
essential boundary condition for V must be enforced separately,
and as a consequence, the velocity test functions must vanish on
the boundary. The boundary condition for J is a natural one
and can be recovered from Equation (17).
A finite-element discretization of the problem is obtained by

requiring that Equations (16) and (17) be satisfied for only a fi-
nite number of test functions, namely, the basis functions of suit-
ably chosen finite-element spaces. Also, the boundary condition
for V must be approximately satisfied in an appropriate sense,
for example, by requiring that V = V0 at the boundary nodes
of the finite-element grid (assuming the use of Lagrangian ele-
ments). This leads to a finite-dimensional system of nonlinear,
algebraic equations that can be solved by way of linearization
and iteration.
Equation (16) is linearized by replacing the first arguments

of the forms a1 and f by initial guesses or previously computed
values Vold and Jold for the velocity field and current density.
In terms of the original PDEs, this amounts to lagging the first
velocity in the inertia term (V · ∇)V, the induced magnetic
field B(J), and the temperature distribution T (V,J). Lagging
the magnetic field and temperature also prevents the occurrence
of dense matrices despite the presence of the integral operators
B and T . Given an initial guess or previously computed pair
(Vold,Jold), the linearized equations are solved to update (V,J)
and to compute (p, φ). This process is iterated until the change
in (V,J), as measured in a suitable norm, drops below a given
tolerance. At the beginning of each iteration, the induced mag-
netic field B(Jold) and the temperature distribution T (Vold,Jold)
are computed by evaluating the Biot-Savart integral (11) and by
solving the linear, elliptic boundary-value problem (4)–(5), with
H given by (13) and (14). A simplified flow diagram is shown in
Figure 1.
In order to guarantee stability and convergence of the al-

gorithm, some care must be exercised in choosing finite-element
spaces. The main restriction is that the elements used to ap-
proximate velocity and pressure as well as those used for elec-
tric current density and potential must satisfy so-called inf-sup
conditions or LBB (Ladyzhenskaya-Babuska-Brezzi) conditions.
In the present implementation of the method, we construct a
Lipschitz-continuous coordinate transformation that maps the
physical domain (a circular cylinder) onto a circumscribed square
cylinder (the computational domain), allowing all computations
to be performed on a logically rectangular grid. The square
cylinder is decomposed into rectangular parallelepipeds of equal



size. This allows us to use standard Taylor-Hood elements for
velocity and pressure, namely, continuous piecewise triquadrat-
ics for the velocity and continuous piecewise trilinears for the
pressure. These elements are known to satisfy the LBB condi-
tion. It is natural to use continuous piecewise triquadratics for
the electric potential as well, but the LBB condition then re-
quires a somewhat nonstandard finite-element space for the cur-
rent density: this space must contain the gradients of continuous
piecewise triquadratics. Thus, the elements used to approximate
the ith component of the current density are piecewise linear and
generally discontinuous in the ith variable, but continuous and
piecewise quadratic in the remaining two variables.
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Figure 1. Simplified flow diagram for the iterative so-
lution of the discretized problem.

Basis functions for the above finite-element spaces are con-
structed using standard 27-node Lagrange elements for the ve-
locity and potential, standard 8-node Lagrange elements for the
pressure. For the ith component of the current density, we use
Hermite elements with nine nodes, namely, those nodes of the
standard 27-node Lagrange element that are not on faces per-
pendicular to the ith coordinate axis; two degrees of freedom
are associated with each of these nodes, namely, the value of
the function and the value of its derivative with respect to the
ith variable. (Instead of 9-node Hermite elements, we could of
course use 18-node Lagrange elements, but we would then be
unable to utilize the same nodes as for velocity, pressure, and
potential.)
Since pressure and potential can be determined only up to

additive constants, both are set equal to zero at one node of
the finite-element grid. The essential boundary condition for
the velocity field is enforced by setting V = V0 at all boundary
nodes.
With these choices, and in light of general results of finite-

element theory, the discretization error is expected to decrease
quadratically with the grid size. For further details, includ-
ing rigorous error estimates and a numerical validation of the
predicted quadratic rate of convergence, we refer to Meir and
Schmidt (1999b).

3. NUMERICAL EXPERIMENTS AND DISCUSSION
The method described in the previous section was imple-

mented and tested in a series of computer experiments. Although
these experiments are of a preliminary nature, they demonstrate
the feasibility of the approach.
While the present implementation allows the computation

of the induced magnetic field B(J), via evaluation of the Biot-
Savart integral (11), it does not yet incorporate the effect of
temperature fluctuations; that is, T (V,J) is assumed to be zero.
According to the remarks at the end of Section 1, this is viable
only as a first approximation. Adding a subroutine for the com-
putation of T (V,J) poses no problem in principle, but requires
laboratory experiments to validate the proposed model (14) for
the radiative heat source (including measurements of the inten-
sity distribution in the light cone and infrared absorption prop-
erties of the metal samples).
Besides neglecting temperature fluctuations, the computa-

tions have thus far been limited to the laminar flow regime with
small angular velocities and modest magnetic fields. All compu-
tations were done on a workstation, which, in conjunction with
the sheer size of this fully three-dimensional problem, precluded
the use of all but very coarse finite-element grids. The simula-
tion of more realistic flow conditions would require much higher
spatial resolution (that is, much finer grids) and ultimately, the
incorporation of a turbulence model.
We used the discretization and iteration scheme described

in Section 2 on a grid of 432 elements with a total of 4,225
nodes. The ensuing sparse linear systems, with roughly 30,000
unknowns (not counting the induced magnetic field), were solved
directly, using a standard linear-algebra package. Stiffness ma-
trices and load vectors were computed with a high-order Gaus-



sian quadrature rule on the reference element. When desired,
the induced magnetic field could be determined by evaluating
the Biot-Savart integral via Gaussian quadrature.

Given below are the results of a simulation of one of the ex-
periments described in Bakhtiyarov et al. (1999), where a cylin-
drical column of liquid aluminum is steadily rotated in a uniform
magnetic field perpendicular to the cylinder axis; see Figure 2
for the geometry of the configuration and the table below for the
data and parameters used (MKS units are employed through-
out).

Table 1. Data and parameters for computer experiment.

R cylinder radius 1.27 · 10−2 m
L cylinder height 10.16 · 10−2 m
ω angular frequency 1.05 s−1 (10 rpm)
B0 applied field 0.1 T
ρ density 2.38 · 103 kg m−3

η viscosity 1.8 · 10−3 kg m−1 s−1

σ electric conductivity 4.1 · 106 mho m−1

µ magnetic permeability 1.26 · 10−6 H m−1

6
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�6V0

z

x

2R

-
B0

L

Figure 2. Geometry of the configuration.
(Not to scale. Aspect ratio L/2R is 4.)

Figures 4–7 show the computed current, potential, velocity,
and pressure distributions. Clearly visible is a closed current
loop parallel to the plane y = 0 (which contains both the axis of
the magnetic field and the axis of rotation). Significant poten-
tial gradients arise only near the top and bottom of the column.
The velocity field is almost purely horizontal, the pressure al-
most purely radial. Figure 8, depicting the flow pattern in the
plane z = 0, reveals significant counter-rotation associated with
two kidney-shaped vortices, centered on the x-axis (the axis of

the magnetic field) and equidistant from the center. The same
general pattern is found in horizontal cross-sections along much
of the cylinder axis. Due to the no-slip boundary condition, a
transition to rigid rotation occurs near the top and bottom, but
the transition layers are fairly thin (compare Figures 8 and 9).
More quantitative information can be inferred from azimuthal
velocity profiles, parallel and perpendicular to the magnetic field.
Figure 10 shows the y-velocity along the x-axis, Figure 11 the
negative of the x-velocity along the y-axis, both in the plane
z = 0. Figures 12 and 13 give essentially the same information,
but with respect to the rest frame of the cylinder; that is, they
show the azimuthal components of the induced velocity V−V0
(where V0 is the velocity field associated with a rigid rotation at
constant angular frequency ω). The induced velocity is generally
antiparallel toV0 and of the same order of magnitude. As a con-
sequence, the fluid is virtually at rest in the region between the
two vortices seen in Figures 8 and 9. Figures 14 and 15 support
the observation that the induced velocity does not appreciably
decrease along much of the cylinder axis. (It must, of course, go
to zero in the transition layers at the top and bottom.)
In this simulation, the induced magnetic field B(J) was fully

accounted for. We then repeated the experiment, this time ne-
glecting B(J). As expected (in view of a magnetic Reynolds
number of order 10−3), we found the difference to be insignifi-
cant.
The results of the simulation are easily explained, at least

qualitatively, by inspection of the leading-order terms in the
Navier-Stokes equations and Ohm’s law. The velocity field asso-
ciated with the rigid rotation of the cylinder isV0 = ω(−yi+xj).
This is a solution of the Navier-Stokes equations with zero body
forces. No viscous shear is associated with V0, and inertia is bal-
anced by a radial pressure gradient: ρ(V0 · ∇)V0 = −∇p0 with
p0 =

1
2
ρω2(x2 + y2). Due to the presence of the applied mag-

netic field B0 = B0i, a current J0 = σV0 × B0 = −σωB0xk is
induced. This current is parallel to the z-axis and concentrated
in two near-wall regions centered on the x-axis (see Figure 3);
it is not accompanied by a potential gradient (since V0 × B0
is solenoidal). The finite length of the cylinder forces return
currents to flow parallel to the x-axis in boundary layers near
the top and bottom of the cylinder; those are associated with
potential gradients.
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Figure 3. Induced current and flow field.



The current J0 and applied field B0 generate a Lorentz force
J0 × B0 = −σωB

2
0xj. This force is rotational and cannot be

balanced by a pressure gradient; it thus accelerates the fluid,
resulting in a secondary velocityV1, antiparallel to V0 (see Fig-
ure 3). This explains the general flow pattern (and in particular,
the kidney-shaped vortices) seen in Figures 8 and 9. According
to the remarks at the end of Section 1, it must be the inertial
force, ρ(V1 · ∇)V1, which balances J0 × B0. A characteristic
value of V1 is thus given by V1 = (σω/ρ)

1/2RB0, and the ratio
V1/V0 = (σ/ρω)

1/2B0 is roughly of order one. (This scaling ar-
gument applies as long as the hydrodynamic Reynolds number
is large compared to unity. This is the case even for fairly small
ω, but of course not in the limit ω → 0.)

One conclusion is that applying a relatively strong mag-
netic field at modest speeds of rotation can result in significant
counter-rotation of the melt in the two near-wall regions, cen-
tered on the axis of the magnetic field, where the current J0
is concentrated. Since the rotation of the cylinder constantly
transports fluid particles through these regions, this may be an
efficient stirring mechanism.

CONCLUSIONS
A new aproach to the mathematical modeling and compu-

tational simulation of fully three-dimensional, electromagneti-
cally and thermally driven liquid-metal flow was developed and
applied to simulate the flow of a metallic melt in a cylindrical
crucible, rotating steadily in a uniform magnetic field perpendic-
ular to the cylinder axis. A finite-element based discretization
and iteration scheme was designed for the numerical solution of
the underlying nonlinear PDEs. The results of preliminary com-
puter experiments (limited to the laminar flow regime and not
accounting for temperature fluctuations) were shown to agree
with theoretical predictions. It was found that already mod-
est magnetic fields and angular velocities can lead to significant
counter-rotation and efficient stirring of the melt.
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Figure 4. Current density.
Figure 5. Electric potential.



 

z

−0.0508

0

0.0508

y −0.01
0

0.01

x−0.01
0

0.01

Figure 6. Velocity field.
Figure 7. Pressure distribution.
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Figure 8. Flow pattern in the plane z=0.
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Figure 9. Flow pattern in the plane z=5L/12.
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Figure 10. Azimuthal velocity in the plane z=0, along
the x-axis (parallel to the magnetic field).
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Figure 11. Azimuthal velocity in the plane z=0, along
the y-axis (perpendicular to the magnetic field).
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Figure 12. Induced azimuthal velocity (V-V0) in the
plane z=0, along the x-axis.
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Figure 13. Induced azimuthal velocity (V-V0) in the
plane z=0, along the y-axis.
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Figure 14. Induced azimuthal velocity (V-V0) in the
plane z=5L/12, along the x-axis.
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Figure 15. Induced azimuthal velocity (V-V0) in the
plane z=5L/12, along the y-axis.
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