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Abstract.Much research effort has recently been devoted to the electromagnetic control of saltwater flows, exploiting the macroscopic interaction
of saltwater with electric currents and magnetic fields. This interaction is governed by the equations of viscous incompressible MHD, essentially,
the Navier-Stokes equations coupled to Maxwell’s equations. A major problem in the analysis and numerical solution of these equations is the
fact that while the Navier-Stokes equations are posed in the fluid domain, Maxwell’s equations are generally posed on all of space. Consequently,
electric and magnetic fields do not satisfy standard boundary conditions, but jump or continuity relations on the surface of the fluid domain (and
other interfaces). Frequently the resulting difficulties are circumvented by prescribing more or less artificial boundary conditions.

In this paper we present a novel formulation of the MHD equations that avoids some inherent difficulties of more traditional approaches by
employing the electric current density rather than the magnetic field as the primary electromagnetic variable. This formulation leads to initial-
boundary value problems for a system of integro-differential equations in the fluid domain and lends itself naturally to the use of finite-element
based discretization techniques. As a first application we describe a mixed finite-element method for the numerical solution of a class of stationary
MHD flow problems and report on the computational simulation of a simple drag reduction experiment.

I. INTRODUCTION
It has long been known that the flow of an electrically conducting fluid,

such as seawater, is affected by Lorentz forces, induced by the interaction
of electric currents and magnetic fields in the fluid. Only recently has it
been demonstrated that such Lorentz forces can be used to control the flow
and to attain specific engineering design goals such as flow stabilization,
suppression or delay of flow separation, reduction of near-wall turbulence
and skin friction, drag reduction and thrust generation (see, for example, [4,
9, 10] and the references cited therein).

The theory that describes the macroscopic interaction of an electrically
conducting fluid with electric currents and magnetic fields is magnetohydro-
dynamics (or MHD). Assuming the fluid to be viscous, incompressible, and
finitely conducting, the governing equations are the Navier-Stokes and pre-
Maxwell equations, coupled via the Lorentz force and Ohm’s law. While the
Navier-Stokes equations are posed in the fluid domain, Maxwell’s equations
are generally posed on all of space, and typically both interior and exterior
fields must be determined. Only under special circumstances, most notably
in the presence of perfectly conducting walls, is it legitimate to confine
attention to the body of conducting fluid and to neglect its electromagnetic
interaction with the outside world. In general this interaction is of critical
importance; in fact, it constitutes what mostly distinguishes MHD from
ordinary hydrodynamics and is a source of challenging mathematical and
computational problems.

Traditionally, the MHD equations are formulated as a system of evo-
lution equations for the fluid velocity and the magnetic field, along with an
auxiliary equation for the electric field outside the fluid region. The fact
that the magnetic field extends to all of space and may exhibit jump discon-
tinuities across interfaces separating media with different electromagnetic
properties causes analytical as well as computational difficulties, which
are frequently circumvented by prescribing more or less artificial boundary
conditions. In [5–8] and [12] we developed a novel approach to viscous
incompressible MHD that avoids some intrinsic difficulties of the traditional
method by employing fluid velocity and electric current density (rather than
fluid velocity and magnetic field) as the primary variables. This “velocity-
current formulation” exploits the fact that while magnetic fields may extend
throughout space, the unknown currents inducing those fields are typically
carried by conductors of finite extent. If we consider, for example, a single
body of conducting fluid and assume all external field sources to be known,
the only unknown current flows in the fluid region itself. In this case, the
velocity-current formulation allows us to perform all computations on the
fluid domain while still accounting exactly for the effects of the universal
electromagnetic field. In general, the velocity-current formulation leads to a
system of evolution equations for the fluid velocity and the unknown current
density in the fluids and adjacent solid conductors, along with an auxiliary
linear div-curl system, which can usually be solved analytically in terms of
singular integrals.

The velocity-current formulation lends itself naturally to the use of
finite-element based discretization techniques and provides a theoretical
framework for the development of efficient computational tools for the
simulation of a wide variety of MHD flow problems, including the elec-
tromagnetic control of seawater flow. While the method has not yet been
applied on an industrial scale, it has been shown to be effective in the analy-
sis and numerical solution of a class of stationary MHD flow problems (see
[8]). In the following we describe the general approach (Section II), derive
a mixed variational formulation for the stationary case (Section III), discuss
a finite-element method based on this formulation (Section IV), and re-
port on the computational simulation of a simple drag reduction experiment
(Section V). Despite the academic nature of this simulation, it illustrates
the potential usefulness of our approach in solving a variety of MHD flow
control and design problems.

II. THE VELOCITY-CURRENT FORMULATION
We are concerned with the flow of a viscous, incompressible, electri-

cally conducting fluid, confined to a bounded region of space and interacting
with various body forces, electric currents, and electromagnetic fields. Un-
der the assumptions of the MHD approximation, the flow is governed by the
Navier-Stokes equations, posed in the fluid domain, and the pre-Maxwell
equations, posed on all of space; both are coupled via the Lorentz force
and Ohm’s law. As discussed in the introduction, we seek to formulate
the problem as a system of evolution equations for the fluid velocityu and
the electric current densityJ in the fluid; both are solenoidal vector fields,
depending on timet and positionx.

The evolution of the velocity field is governed by the Navier-Stokes
equations, that is, the momentum balance

ρut − η∆u + ρ(u · ∇)u +∇p− J× B = Fext (1)

along with the continuity equation

∇ · u = 0 , (2)

reflecting the incompressibility of the fluid. Hereρ andη denote the (con-
stant) density and viscosity of the fluid;Fext is a given external body force;
andp is the scalar pressure, an auxiliary unknown that plays the role of a
Lagrange multiplier associated with the divergence constraint (2). Equa-
tions (1) and (2) are coupled to Maxwell’s equations through the Lorentz
force,J× B, and Ohm’s law,

J = σ(E + u× B) , (3)

whereE andB denote the (unknown) electric and magnetic fields;σ is the
(constant) electric conductivity of the fluid. Additional currentsJext may
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be flowing in external conductors, possibly connected to the fluid domain
via electrodes on the surface. The total current distribution,

J̃ = J + Jext =
{
σ(E + u× B) in the fluid,

Jext in the exterior,

must satisfy the continuity equation

∇ · J̃ = 0 ,

reflecting the conservation of charge.
In order to obtain an evolution equation for the current density, we need

to representE andB in terms ofJ. To begin with, we write the magnetic
field as

B = Bext + B(J̃) ,

whereBext is an applied field, possibly generated by permanent or electro-
magnets surrounding the fluid domain, whileB(J̃) is the field induced by
J̃ = Jext + J. Adopting the quasi-stationary form of Maxwell’s equations,
as is the custom in MHD, we obtainB(J̃) as the solution of

∇× µ−1B(J̃) = J̃ and ∇ · B(J̃) = 0 ,

whereµ denotes the magnetic permeability. For simplicity we assume the
fluid as well as all materials outside to be nonmagnetic so thatµ is the
permeability of the vacuum.

Next we introduce vector potentials for the (solenoidal) vector fields
Bext andB(J̃), that is, vector fieldsAext andA(J̃) satisfying

∇× Aext = Bext and ∇ · Aext = 0 ,

∇×A(J̃) = B(J̃) and ∇ · A(J̃) = 0 .

Since we have∇ × µ−1B(J̃) = J̃ and sinceµ is assumed to be constant,
A(J̃) satisfies

∇×∇×A(J̃) = µJ̃ and ∇ · A(J̃) = 0 ,

or equivalently,
−∆A(J̃) = µJ̃ .

Under a suitable radiation condition at infinity, this equation has a unique
solution,

A(J̃) = µL(J̃) = µL(Jext) + µL(J) ,

where (formally)L = (−∆)−1. Similarly,

Aext = L(∇× Bext) = ∇×L(Bext) .

We note thatL is a weakly singular integral operator, given by

L(f )(x) =
1

4π

∫
R3

f (y)

|x− y|
dy ,

for any sufficiently regular vector fieldf with sufficiently fast decay at
infinity, and that

∇× L(f )(x) = −
1

4π

∫
R3

x− y

|x− y|3
× f (y) dy .

The resulting representation of the magnetic field,

B = Bext + B(J̃) = Bext + µ∇× L(Jext) + µ∇×L(J) , (4)

is commonly called the Biot-Savart law.
Turning to the electric fieldE, we observe that according to Faraday’s

law,
∇× E = −Bt .

SinceB = ∇× A with A = Aext +A(J̃), it follows that∇× (E + At) = 0
and thus,E + At = −∇φ for some scalar potentialφ. But

At = Aext,t +A(J̃)t

= ∇× L(Bext,t) + µL(Jext,t) + µL(Jt)

and thus,
E = Eext− µL(Jt)−∇φ ,

where
Eext = −∇× L(Bext,t)− µL(Jext,t) . (5)

Substituting this into Ohm’s law (3), we obtain

J = σ(Eext− µL(Jt)−∇φ + u× B)

or equivalently,

µL(Jt) + σ−1J +∇φ− u× B = Eext . (6)

This is the desired evolution equation for the current densityJ in the fluid
domain. Analogous to the pressurep in the Navier-Stokes equations, the
scalar potentialφ plays the role of a Lagrange multiplier associated with the
divergence constraint

∇ · J = 0 . (7)

Obviously the system of equations (1)–(2) and (6)–(7), withB and
Eext given by (4) and (5), isclosedonly if the external current distribution
Jext is assumed to be known. If this is not the case, Equations (6)–(7)
must be solved in a larger region of space, including the fluid and adjacent
external conductors (withu = 0 outside the fluid, of course). It should be
noted, however, thatJext enters the equations only via the induced magnetic
field,µ∇×L(Jext). In many applications the effect of this field on the fluid
motion will be negligible. In fact, the applied magnetic fieldBext is typically
much stronger thanany induced field, so that it may well be reasonable to
neglect induction effects altogether. Formally, this amounts to settingµ = 0
in (4)–(6), in which case Equation (6) becomes quasi-stationary.

The system of equations (1)–(2) and (6)–(7) must be supplemented
with initial conditions foru and J and suitable boundary conditions for
(u, p) and (J, φ). Let Ω denote the fluid domain,Γ its surface, andn the
outward unit normal vector field onΓ. The simplest physically reasonable
and mathematically feasible boundary conditions areu = 0 andJ · n = 0
on Γ. Here we allow for both mass and current flux acrossΓ, which
leads to inhomogeneous Dirichlet or Neumann type boundary conditions.
Specifically, we prescribe thevelocityu on an open subsetΓ1 of Γ and the

stressη
(
∇u+(∇u)T

)
·n−pn on its complementΓ2 = Γ\Γ1; we prescribe

thecurrent fluxJ · n on an open subsetΓ3 of Γ and theelectric potentialφ
on its complementΓ4 = Γ \ Γ3:

u = g1 on Γ1, η
(
∇u + (∇u)T

)
· n− p n = g2 on Γ2,

J · n = g3 on Γ3, φ = g4 on Γ4.

In certain cases, the boundary datag1, g2, g3, g4 must satisfy compatibility
conditions. For example, ifΓ2 = ∅, theng1 · n must have mean zero onΓ
(since∇ · u = 0 in Ω); if Γ4 = ∅, theng3 must have mean zero onΓ (since
∇ · J = 0 in Ω).

Summarizing, our problem is the following: Given the fluid domainΩ
(a bounded region of space with sufficiently regular boundaryΓ = Γ1∪Γ2 =
Γ3 ∪ Γ4), given the positive parametersρ, η, µ, andσ, given the external
fieldsFext, Jext, Bext, andEext = −∇× L(Bext,t)− µL(Jext,t), given
compatible boundary datag1, g2, g3, andg4, and given initial valuesu0

and J0, find vector fieldsu = u(t, x), J = J(t, x) and scalar fieldsp =
p(t, x), φ = φ(t, x) such that the following equations are satisfied with
B = Bext + µ∇×L(Jext) + µ∇× L(J):

ρut − η∆u + ρ(u · ∇)u +∇p− J× B = Fext (t > 0, x ∈ Ω),



∇ · u = 0 (t > 0, x ∈ Ω),

µL(Jt) + σ−1J +∇φ− u× B = Eext (t > 0, x ∈ Ω),

∇ · J = 0 (t > 0, x ∈ Ω),

u = g1 (t > 0, x ∈ Γ1),

η
(
∇u + (∇u)T

)
· n− p n = g2 (t > 0, x ∈ Γ2),

J · n = g3 (t > 0, x ∈ Γ3), φ = g4 (t > 0, x ∈ Γ4),

u = u0 (t = 0, x ∈ Ω), J = J0 (t = 0, x ∈ Ω).

Under mild regularity assumptions on the data, this problem has a weak
solution (u, J, p, φ), defined for all timet > 0. If the boundary data are
sufficiently small (or if the viscosityη and resistivityσ−1 of the fluid are
sufficiently large), the solution remains bounded ast → ∞. For further
details and a rigorous proof (if only in the caseΓ2 = Γ4 = ∅), the reader is
referred to [12].

III. A VARIATIONAL FORMULATION FOR THE STATIONARY
PROBLEM

As a first step towards the numerical analysis and finite-element ap-
proximation of the full, time-dependent problem described in Section II, we
consider the steady-state version where data and unknowns are independent
of time. In this case Equations (1)–(2) and (6)–(7) reduce to

−η∆u + ρ(u · ∇)u +∇p− J× B = Fext , (8)

∇ · u = 0 , (9)

σ−1J +∇φ− u× B = Eext , (10)

∇ · J = 0 , (11)

all posed in the fluid domainΩ and supplemented with boundary conditions
on the surfaceΓ = Γ1 ∪ Γ2 = Γ3 ∪ Γ4:

u = g1 on Γ1, η
(
∇u + (∇u)T

)
· n− p n = g2 on Γ2, (12)

J · n = g3 on Γ3, φ = g4 on Γ4. (13)

As before, the magnetic field is given by

B = Bext + µ∇× L(Jext) + µ∇× L(J) . (14)

On physical grounds,Eext should be zero in the stationary case, but for
reasons of symmetry in the equations we allow for an arbitrary fieldEext.
We assume thatΩ is a bounded Lipschitz domain and that the subsetsΓi
of the surfaceΓ are non-empty, open Lipschitz surfaces withΓ1 ∩ Γ2 = ∅,
Γ1∪Γ2 = Γ andΓ3∩Γ4 = ∅, Γ3∪Γ4 = Γ. (The subsequent analysis would
remain valid, with only minor modifications, if one of the setsΓ1, Γ2 and/or
one of the setsΓ3, Γ4 was empty.)

We will seek weak solutions (u, J, p, φ) of Equations (8)–(14) with

u ∈ X1 := H1(Ω), J ∈ X2 := L2(Ω),

p ∈M1 := L2(Ω), φ ∈M2 := H1(Ω).

In addition to the above, we will need the subspaces

X̃1 := {v ∈ X1 | v = 0 onΓ1}

and
M̃2 := {ψ ∈M2 | ψ = 0 onΓ4}.

Here and in the sequel,L2(Ω) denotes the space of square-integrable scalar
functions onΩ, andH1(Ω) is the subspace ofL2(Ω) comprised of functions

with square-integrable first-order derivatives. BothL2(Ω) andH1(Ω) are
Hilbert spaces with norms given by

‖f‖L2(Ω) :=
(∫

Ω
|f |2
)1/2

and

‖f‖H1(Ω) :=
(
‖f‖2

L2 (Ω) + ‖∇f‖2
L2(Ω)

)1/2
.

Bold-face type is used for the corresponding spaces of vector functions.
The following assumptions on the data guarantee that all the equations

are meaningful (in the weak sense):

Fext ∈ L2(Ω), Eext ∈ L2(Ω),

Jext ∈ L2(R3 \Ω), Bext ∈ H1(Ω),

g1 ∈ H1/2(Γ1), g2 ∈ H−1/2(Γ2),

g3 ∈ H
−1/2(Γ3), g4 ∈ H

1/2(Γ4).

The spaceH1/2(Γi), for 1 ≤ i ≤ 4, consists of the traces (or generalized
boundary values) onΓi of functions inH1(Ω), andH−1/2(Γi) is the dual
of H1/2(Γi). These are Hilbert spaces with norms derived from that of
H1(Ω). Again, bold-face type is used for the corresponding spaces of
vector functions.

To derive a weak or variational form of the problem at hand, we
multiply Equations (8) and (10) by test functionsv ∈ X̃1 and K ∈ X2,
respectively, and Equations (9) and (11) by test functionsq ∈M1 andψ ∈
M̃2, respectively. We then integrate overΩ, perform several integrations by
parts, regroup terms, and add the equations obtained from (8) and (10) and
those obtained from (9) and (11). This procedure results in two equations
of the form

a0

(
(u, J), (v,K )

)
+ a1

(
(u, J), (u, J), (v,K )

)
+ b
(

(v,K ), (p, φ)
)

= `0(v,K )
(15)

and
b
(

(u, J), (q, ψ)
)

= `1(q, ψ) , (16)

wherea0 (a bilinear form),a1 (a trilinear form),b (a bilinear form),̀ 0 and
`1 (linear forms) are given by

a0

(
(v1,K1), (v2,K2)

)

:=
η

2

∫
Ω

(
∇v1 + (∇v2)T

)
:
(
∇v2 + (∇v2)T

)
+ σ−1

∫
Ω

K1 · K2

+

∫
Ω

((
K2× B0

)
· v1 −

(
K1× B0

)
· v2

)
,

whereB0 := Bext + µ∇× L(Jext), for (v1,K1), (v2,K2) ∈ X1 × X2,

a1

(
(v1,K1), (v2,K2), (v3,K3)

)

:=
ρ

2

∫
Ω

((
(v1 · ∇)v2

)
· v3 −

(
(v1 · ∇)v3

)
· v2

)

+ µ

∫
Ω

((
K3 × (∇×L(K1))

)
· v2 −

(
K2 × (∇× L(K1))

)
· v3

)
,

for (v1,K1), (v2,K2), (v3,K3) ∈ X1 × X2,

b
(

(v,K ), (q, ψ)
)

:= −

∫
Ω

(∇ · v)q +

∫
Ω

K · (∇ψ) ,

for (v,K ) ∈ X1 × X2, (q, ψ) ∈M1×M2,

`0(v,K ) :=

∫
Ω

Fext · v +

∫
Ω

Eext · K +

∫
Γ2

g2 · v ,



for (v,K ) ∈ X1 × X2, and

`1(q, ψ) :=

∫
Γ3

g3ψ ,

for (q, ψ) ∈M1×M2.
Routine arguments show that finding a weak solution (u, J, p, φ) of

Equations (8)–(14) is equivalent to solving the following variational prob-
lem.

Problem (P ). Find u ∈ X1 with u = g1 on Γ1, J ∈ X2, p ∈ M1, and
φ ∈ M2 with φ = g4 on Γ4 such that Equations (15) and (16) are satisfied
for all (v,K ) ∈ X̃1 × X2 and (q, ψ) ∈M1 × M̃2, respectively.

After homogenization of the essential boundary conditions foru and
φ, Problem (P ) reduces to a mixed variational problem in the sense of
the Ladyzhenskaya-Babuska-Brezzi theory (see, for example, [2, Chap-
ter IV.1]). This allows us to prove the well-posedness of Problem (P ), at
least under a small-data assumption.

Theorem 1. If the dataFext, Eext, Jext, Bext and g1, g2, g3, g4 are
sufficiently small (or if the viscosityη and resistivityσ−1 are sufficiently
large), then Problem (P ) has a unique solution (u, J, p, φ), which depends
continuously on the data and parameters of the problem.

Roughly speaking, Theorem 1 guarantees the existence, uniqueness,
and stability of a steady solution to the MHD equations in the case of
low Reynolds and magnetic Reynolds numbers. For a much more precise
statement of the theorem, including specific bounds on the allowable size of
the data (relative to the parameters of the problem), we refer to [8].

IV. FINITE-ELEMENT DISCRETIZATION AND ERROR
ESTIMATES

In order to discretize Problem (P ), we choose finite-dimensional
approximationsXh1 , Xh2 , Mh

1 , andMh
2 of the spacesX1 := H1(Ω),

X2 := L2(Ω),M1 := L2(Ω), andM2 := H1(Ω). Furthermore, we set̃Xh1 :=
{vh ∈ Xh1 | vh = 0 onΓ1} andM̃h

2 := {ψh ∈ Mh
2 | ψ

h = 0 onΓ4}
and choose approximate essential boundary datagh1 ∈ {v

h|Γ1 | v
h ∈ Xh1 }

andgh4 ∈ {ψ
h|Γ4 | ψ

h ∈ Mh
2 }. Hereh is a discretization parameter,

for example, the meshsize of a triangulation of the domainΩ. We assume
that the spacesXhi andMh

i approximateXi andMi in the sense that the
error of best approximation of a function inXi or Mi by elements ofXhi
orMh

i tends to 0 ash → 0; of course, we also assume thatgh1 → g1 and
gh4 → g4 (in the respective trace spaces). We then consider the following
finite-dimensional approximation of Problem (P ).

Problem (Ph). Find uh ∈ Xh1 with uh = gh1 on Γ1, Jh ∈ Xh2 , ph ∈Mh
1 ,

andφh ∈Mh
2 with φh = gh4 on Γ4 such that the equations

a0

(
(uh, Jh), (vh,Kh)

)
+ a1

(
(uh, Jh), (uh, Jh), (vh,Kh)

)
+ b
(

(vh,Kh), (ph, φh)
)

= `0(vh,Kh)
(17)

and
b
(

(uh, Jh), (qh, ψh)
)

= `1(qh, ψh) (18)

are satisfied for all (vh,Kh) ∈ X̃h1 × Xh2 and (qh, ψh) ∈ Mh
1 × M̃h

2 ,
respectively.

Under certain technical conditions on the finite-dimensional spacesXhi
andMh

i , an analog of Theorem 1 holds for Problem (Ph), and we obtain
an optimal-order estimate for the discretization error (see [8] for details).

Theorem 2. If the dataFext, Eext, Jext, Bext and g1, g2, g3, g4 are
sufficiently small (or if the viscosityη and resistivityσ−1 of the fluid are
sufficiently large) and ifh is sufficiently small, then both Problem (P )
and Problem (Ph) have unique solutions (u, J, p, φ) and (uh, Jh, ph, φh),
respectively. Moreover, the discretization error (that is, the distance between
(u, J, p, φ) and (uh, Jh, ph, φh) in the norm of the product spaceX1×X2×
M1×M2) is of the same order as the sum of the error of best approximation

of (u, J, p, φ) by elements ofX1 × X2 ×M1 ×M2 plus the error in the
approximate boundary data,‖g1− gh1 ‖H1/2(Γ1) + ‖g4− g

h
4 ‖H1/2(Γ4). In

particular, (uh, Jh, ph, φh)→ (u, J, p, φ) ash→ 0.

Theorem 2 and general results of finite-element theory suggest that
Problem (Ph) will be ak-th order approximation of Problem (P ) (for some
positive integerk) if we use appropriate piecewise polynomial approxima-
tions of degreek for the velocity and electric potential and of degreek−1 for
the pressure and current density. Assuming, for simplicity, that the domainΩ
is a polyhedron and that we are given a regular decomposition ofΩ into sim-
plicial or rectangular elements, we may approximateH1(Ω) andL2(Ω) by
the spacesPh2 andPh1 of continuous piecewise quadratics (or triquadratics)
and continuous piecewise linears (or trilinears) on tetrahedra (or rectangular
parallelepipeds), respectively, and then setXh1 := Ph2 × P

h
2 × P

h
2 and

Mh
1 := Ph1 . These so-called Taylor-Hood type velocity-pressure pairs are

widely used in computational fluid dynamics and well understood (see, for
example, [1, Chapter VI.6] or [3, Chapter 3]); in particular, they satisfy all
the technical conditions needed to prove Theorem 2, the most important of
which is the so-called LBB-condition.

In view of the above choices of velocity-pressure pairs, it is natural
to setMh

2 := Ph2 . In order to satisfy the LBB-condition, the spaceXh2
should then contain the gradients of all continuous piecewise quadratics (on
tetrahedra) or triquadratics (on rectangular parallelepipeds). Thus, in the
case of asimplicial triangulation, we choose forXh2 the subspace ofL2(Ω)
comprised of all vector functions onΩ whose components are (generally
discontinuous) piecewise linears. When usingrectangular elements, we
let Xh2 := Xh2,1 × Xh2,2 × Xh2,3 and choose forXh2,i the tensor product of
the space of (generally discontinuous) piecewise linears in thei-th variable
and the space of continuous piecewise biquadratics in the remaining two
variables. Note that in any case,Xh2 containsPh1 × P

h
1 × P

h
1 . Pairs of

spaces likeXh2 andMh
2 are commonly used in connection with so-called

primal mixed methods (see, for example, [11, Section 12]).
With the above choices of finite-element spaces, the error of best

approximation of the exact solution of Problem (P ) will be of orderh2

provided that the exact solution is sufficiently regular (that is, ifu ∈ H2(Ω),
J ∈ H1(Ω), p ∈ H1(Ω), φ ∈ H2(Ω)). Approximate essential boundary
data can be chosen in such a way that the error in those is of the same order.
For example, ifg1 andg4 are sufficiently smooth, one can take forgh1 and
gh4 the Lagrange interpolants ofg1 andg4 in the respective trace spaces of
Xh1 andMh

2 . In general, independent of the smoothness ofg1 andg4, one
can utilize generalized interpolants of Scott-Zhang type (see [13, Section 5].
In any case, Theorem 2 then guarantees that the solution of Problem (Ph)
will approximate the exact solution of Problem (P ) with an error of order
h2.

Several methods suggest themselves naturally for solving the discrete
problem (Ph). Most straightforward is a simple linearization-iteration
scheme where one lags the first argument (uh, Jh) of the trilinear form
a1. In the situation of Theorem 2, this scheme converges globally, that
is, for every initial guess (uh0 , J

h
0 ). Despite the presence of the nonlocal

operatorL, the resulting linear systems are sparse and can be solved either
directly or iteratively. Intermediate computations of the induced magnetic
field µ∇×L(J) are expensive, but can be handled efficiently, for example,
with fast multi-pole methods.

Further speed-up may be achieved through the use of multi-level meth-
ods. In [5], for example, we describe a simple two-level algorithm, which
yields optimal-order approximations by first solving the nonlinear problem
(Ph) on a rather coarse grid (withh ∼ H, say) and then solving a lin-
earization of (Ph) on a much finer grid (withh ∼ H2). Finally, parts of
the method are inherently parallelizable — a feature that will have to be
exploited in order to deal with industrial-strength applications.

V. NUMERICAL EXPERIMENT
We implemented the method, as described, to simulate MHD flow

around a circular cylinder in a channel with square cross section (see Fig-
ure 1). The flow domain was discretized by first mapping it to a rectangular
channel with a rectangular cavity and then decomposing the latter into cubes
of equal size (see Figures 2 and 3). In view of the remarks about suitable
finite-element spaces in Section IV, we used standard triquadratic Lagrange



elements for the velocity and electric potential, standard trilinear Lagrange
elements for the pressure. For thei-th component of the current density,
we chose Hermite elements with nine nodes, namely, those nodes of the
principal lattice of degree two (on the reference cube) that are not on faces
perpendicular to thei-th coordinate axis; two degrees of freedom were as-
sociated with each such nodea, namely,f 7→ f (a) andf 7→ ∂if (a). This
choice is convenient in constructing a basis for the somewhat nonstandard
spaceXh2,i. We used Lagrange interpolation to approximate the essen-
tial boundary data and employed the simple iteration scheme described in
Section IV to solve Problem (Ph).

We prescribed a parabolic inflow velocity profile at the left end of the
channel, zero velocity on the channel walls and on the cylinder surface,
and zero stress on the outflow boundary (the right end of the channel). A
permanent magnet, generating a dipole fieldBext, was positioned along
the cylinder axis (north pole facing the front), and a pair of electrodes was
located on the down-stream part of the cylinder surface, one near the top, the
other near the bottom. On the electrodes we specified the electric potential
(negative on the upper, positive on the lower one); on all other boundaries
we required zero current flux. No external body forces, external currents,
or external electric fields were accounted for.

Since the experiment was anyway of an academic nature, we set all
parameters equal to one. Moreover, all non-zero data (inflow velocity,
applied magnetic field, and boundary values of the electric potential) were
roughly of order one. We first solved the problem without magnetism and
electricity; Figure 4 shows the resulting (purely hydrodynamic) velocity
field. We then repeated the computation with magnetism and electricity
switched on. The resulting velocity field, depicted in Figure 5, reveals a
significant change in the flow pattern in the wake of the cylinder. In both
cases, we also computed the total force acting on the cylinder, that is, the
integral of the stress over the cylinder surface. In both cases, this force is
parallel to the channel axis, but its direction is reversed when magnetism
and electricity are switched on. The numerical values obtained were +230
versus−148. Most of the change in the total force is due to a reversal of
the pressure gradient near the cylinder. Computing only the skin friction
component, we found a drag reduction from 56 to 17.
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Fig. 1. The channel and cylinder.
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Fig. 2. Physical grid.

 

z

−0.5

0

0.5

x

−0.5 0 1 1.3

Fig. 3. Logical grid.
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Fig. 4. Velocity field.
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Fig. 5. Velocity field with MHD.

VI. CONCLUDING REMARKS
A novel formulation of the equations of viscous incompressible MHD

was presented that allows for realistic boundary and interface conditions
and accounts for the electromagnetic interaction of the fluid with the outside
world while restricting computations to the region occupied by the fluid
(and possibly, adjacent solid conductors). A mixed variational method was
developed for the corresponding steady-state problem, which lends itself
naturally to a finite-element discretization. The method was successfully
implemented and tested by simulating a simple drag reduction experiment.
The method can be used to solve a variety of MHD flow control and design
problems, where the controls are applied magnetic fields, electric currents,
and electric potentials. In its present implementation, the method is limited
to the simulation of steady, laminar flows in the case of low Reynolds and
magnetic Reynolds numbers, but the approach is potentially applicable to
the simulation of unsteady and turbulent flows as well.
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