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INTRODUCTION

Magnetohydrodynamics (or MHD) describes the flow of electrically conducting fluids

in the presence of body forces, electric currents, and electromagnetic fields. Assuming

the fluids to be viscous and incompressible, the governing equations are the Navier-

Stokes and pre-Maxwell equations, coupled via the Lorentz force and Ohm’s law (see,

for example, [8, Chapter 2]).

While the Navier-Stokes equations are posed in the regions occupied by con-

ducting fluids, Maxwell’s equations are posed in all of space, and typically, both

interior and exterior fields must be determined. Only under special circumstances,

most notably in the presence of perfectly conducting walls (“ideal boundaries”), is

it legitimate to confine attention to a single body of conducting fluid and to neglect

its electromagnetic interaction with the outside world. In general, this interaction is

of critical importance; it constitutes what mostly distinguishes MHD from ordinary

hydrodynamics and is a source of challenging mathematical and computational prob-

lems. We refer to the introduction of [6] for further discussion and a review of the

relevant mathematical literature.

Traditionally, the MHD equations are formulated as a system of evolution equa-

tions for the fluid velocity and the magnetic field, along with an auxiliary equation

for the electric field outside the fluid region. See [3, 4] for seminal contributions

based on this approach and [9] for a recent improvement. The fact that the magnetic



field extends to all of space and may exhibit jump discontinuities across interfaces

separating media with different electromagnetic properties necessitates the use of un-

usual and complicated function spaces. While the ensuing difficulties are analytically

tractable, they all but preclude the application of standard numerical techniques, such

as finite-element methods, for the numerical approximation of solutions.

In [5–7] we developed a novel approach to MHD that avoids some intrinsic diffi-

culties of the traditional method by employing the electric current density rather than

the magnetic field as the primary electromagnetic variable. Our “velocity-current for-

mulation” exploits the simple fact that while electric and magnetic fields may extend

throughout space, the unknown currents inducing those fields are typically carried by

conductors of finite extent. If we consider, for example, a single body of conducting

fluid and assume all external field sources to be known, the only unknown current

flows in the fluid region itself. In general, the velocity-current formulation leads to a

system of evolution equations for the fluid velocity and the unknown current density

in the fluids and surrounding solid conductors, along with an auxiliary linear div-curl

system in R3; the latter can frequently be solved analytically in terms of singular

integrals.

The function spaces arising in this formulation are standard Lebesgue and Sobolev

spaces, which allows the immediate application of finite-element based discretization

techniques. In [5–7] this approach was successfully pursued in the mathematical

analysis, numerical approximation, and computational simulation of various station-

ary MHD flow problems. Here we present, for the first time, an application to a

full, time-dependent problem. To highlight the main ideas without overloading the

exposition with technical details, we consider a rather simple scenario, with a single

body of conducting fluid and known external field sources, and we only prove the

global-in-time existence of weak solutions. The novelty is not so much in the result ,

which could also be obtained with the methods of [3, 4] or [9] (although our boundary

conditions are more general), but in the approach. This approach is potentially ap-

plicable to a much wider class of problems; it yields results, analogous to those in [9],

that go far beyond the existence of weak solutions; and most importantly, it allows

the design of efficient algorithms for the numerical approximation of solutions. All

these aspects are the subject of ongoing research and will be presented in more detail

in forthcoming publications.

The present paper is organized as follows. In Section 1 we present the velocity-

current formulation for the time-dependent MHD equations. In Section 2 we derive

an abstract version of the problem in a Hilbert space setting. Finally, in Section 3,

we establish the existence of global-in-time weak solutions via the Galerkin method.
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1. THE PROBLEM AND ITS PHYSICAL BACKGROUND

We are concerned with the flow of a viscous, incompressible, electrically conducting

fluid, confined to a bounded region of space and interacting with various body forces,

electric currents, and electromagnetic fields. Roughly speaking, the flow is governed

by the Navier-Stokes equations, posed in the fluid region Ω, coupled to Maxwell’s

equations, posed in all of R3. As discussed in the introduction, we seek to formulate

the problem as a system of evolution equations for the fluid velocity u and the current

density J in the fluid; both are solenoidal vector fields, depending on time t ∈ (0, T )

and position x ∈ Ω.

For the velocity field we have

ρut − η∆u+ ρ(u · ∇)u+∇p− J×B = f and ∇ · u = 0 in (0, T )× Ω. (1)

These are the familiar Navier-Stokes equations, except for the term J × B, which

represents the Lorentz force; B is the (unknown) magnetic field. The density ρ and

viscosity η are given positive constants; f is a given body force; and the scalar pressure

p is an auxiliary unknown that plays the role of a Lagrange multiplier associated with

the constraint ∇ · u = 0.

The equations (1) must be supplemented by suitable boundary and initial condi-

tions for u, for example,

u = g on (0, T )× ∂Ω and u = u0 on {0} × Ω. (2)

Here g is a given vector field, tangential to the boundary of Ω, and u0 is a suit-

ably chosen initial velocity field. By imposing a nonhomogeneous Dirichlet boundary

condition, we allow the fluid to be mechanically driven through boundary forcing.

The current density J in the fluid obeys Ohm’s law,

J = σ(E + u×B) in (0, T )× Ω, (3)

where the conductivity σ is a given positive constant and E denotes the (unknown)

electric field. We allow additional currents Jext to flow in external conductors, possibly

connected to the fluid region via electrodes on the surface. These external currents

are assumed to be given; they could be generated by an adjustable voltage source,

somewhere in an external circuit, for the purpose of driving the fluid in Ω (this is the

operating principle of an MHD propulsion device). The total current distribution,

J̃ =

{
σ(E + u×B) in (0, T ) × Ω,
Jext in (0, T ) ×R3 \ Ω,

(4)

must satisfy the continuity equation

∇ · J̃ = 0 in (0, T ) ×R3. (5)
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Assuming the given external current distribution Jext to be solenoidal in (0, T )×R3\Ω,

Equation (5) is equivalent to

∇ · J = 0 in (0, T ) ×Ω and J · n = Jext · n on (0, T ) × ∂Ω, (6)

where n denotes the outward unit normal vector field on ∂Ω.

We now proceed to “eliminate” the unknown vector fields B and E. Our argu-

ments will not be mathematically rigorous at this stage, but any gaps that remain

will be closed in Section 2. To begin with, we write the magnetic field as

B = Bext + B(J̃) ,

where Bext is a given solenoidal vector field on (0, T ) × R3 (possibly induced by

currents other than J̃ or due to permanent magnetism), while B(J̃) is the field induced

by J̃. Adopting the quasi-stationary form of Maxwell’s equations, as is the custom in

MHD, we obtain B(J̃) as the solution of

∇× µ−1B(J̃) = J̃ and ∇ · B(J̃) = 0 ,

where µ denotes the magnetic permeability. For simplicity we assume the fluid as

well as all materials outside to be nonmagnetic, so that µ is the permeability of the

vacuum (a positive constant).

Next we introduce solenoidal vector potentials Aext and A(J̃) for the solenoidal

vector fields Bext and B(J̃), that is, we solve

∇×Aext = Bext and ∇ ·Aext = 0 ,

∇×A(J̃) = B(J̃) and ∇ · A(J̃) = 0 .

Since we have ∇×µ−1B(J̃) = J̃ and since µ is assumed to be constant, A(J̃) satisfies

∇×∇×A(J̃) = µJ̃ and ∇ · A(J̃) = 0 ,

or equivalently, −∆A(J̃) = µJ̃. That is, we have A(J̃) = µL(J̃), where (formally)

L = (−∆)−1. With similar reasoning we get Aext = L(∇ × Bext) = ∇ × L(Bext).

(All this will be made mathematically precise in Section 2.)

The electric field E obeys Faraday’s law,

∇×E = −Bt in (0, T )×R
3.

Since B = ∇×A with A = Aext+A(J̃), it follows that ∇×(E+At) = 0. This allows

us to introduce a scalar potential φ such that E+At = −∇φ, that is, E = −At−∇φ.

But At = Aext,t +A(J̃)t = Aext,t + µL(J̃t) and thus,

E = Eext − µL(J̃t)−∇φ ,
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where Eext = −Aext,t = −∇ × L(Bext,t). Substituting this into Ohm’s law (3), we

obtain

J = σ(Eext − µL(J̃t)−∇φ+ u×B) in (0, T )× Ω.

Together with (5), this leads to the following equations for the current density J in

the fluid region:

µL(J̃t) + σ
−1J+∇φ− u×B = Eext and ∇ · J = 0 in (0, T )× Ω. (7)

Note that the scalar potential φ plays a role analogous to that of the pressure p in the

Navier-Stokes equations (1). We supplement (7) with the boundary condition from

(6) and a suitable initial condition for J:

J · n = Jext · n on (0, T )× ∂Ω and J = J0 on {0} × Ω. (8)

Summarizing, our problem is the following: Given the region Ω, parameters ρ, η,

σ, and µ, data f , g, Jext, Bext, and Eext, and initial values u0 and J0, find vector

fields u and J and scalar fields p and φ on (0, T ) × Ω such that Equations (1), (2),

(7), and (8) are satisfied (at least in a weak sense), with B given by

B = Bext + B(J̃) = Bext + µ∇×L(J̃)

and J̃ = J+ Jext (that is, J̃|(0,T )×Ω = J and J̃|(0,T )×R3\Ω = Jext).

All our subsequent considerations will be based on the following list of assump-

tions.

Standing Assumptions.

(a) The fluid region Ω is a bounded domain in R3, with Lipschitz continuous bound-

ary ∂Ω and outward unit normal vector field n, and T is a fixed positive number.

(b) The parameters ρ, η, σ, and µ are given positive constants.

(c) The boundary velocity g is the restriction of a C1-vector field u∗ on [0, T ] × Ω

with ∇ · u∗ = 0 in (0, T ) ×Ω and u∗ · n = 0 on (0, T )× ∂Ω.

(d) The external current distribution Jext is the restriction of a C
1-vector field J∗ on

[0, T ]×R3 with compact support and ∇ · J∗ = 0 in (0, T ) ×R3.

(e) The initial velocity u0 is a C
1-vector field on Ω, satisfying ∇ · u0 = 0 in Ω and

u0 = g(0, ·) on ∂Ω.

(f) The initial current density J0 is a C
1-vector field on Ω, satisfying ∇ ·J0 = 0 in Ω

and J0 · n = Jext(0, ·) · n on ∂Ω.

(g) The body force f is a continuous vector field on [0, T ] ×Ω.

(h) The external magnetic and electric fields Bext and Eext are continuous vector

fields on [0, T ]×R3.
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Regarding the last assumption, recall that in terms of the underlying physics,

Bext and Eext are not independent data — in fact, Eext is the electric field induced

by the time variation of Bext. Also, both fields should be solenoidal. For our present

purposes, though, none of the above is relevant.

We note that Assumptions (c)–(h) could be relaxed considerably. In particular,

since our goal is to derive a weak formulation of the problem and to establish the

existence of weak solutions, none of the data would need to be differentiable in the

classical sense. However, the above set of assumptions is convenient without being

overly restrictive, and maximum generality is anyway not our objective here.

2. ABSTRACT FORMULATION OF THE PROBLEM

Throughout, we will use standard notation for Lp-spaces (with 1 ≤ p ≤ ∞) and for

spaces of continuous or continuously differentiable functions. For any open subset D

of R3 and any positive integer m, we denote by Hm(D) the usual Sobolev space of

square-integrable functions on D with square-integrable derivatives up to order m.

By Hm0 (D) we mean the closure of C
∞
0 (D) in H

m(D) and by H−m(D), the norm

dual of Hm0 (D).

We will also need the Beppo-Levi space Wm(R3), defined as the completion of

C∞0 (R
3) with respect to the norm f 7→ (

∑
|α|=m ‖D

αf‖2
L2(R3)

)1/2, and its norm dual

W−m(R3); the latter is a space of distributions on R3. It is well known (see, for

example, [1, Vol. 4, Chapter XI.B.1]) that Hm(R3) ↪→ Wm(R3) ↪→ Hmloc(R
3), with

continuous embeddings.

Spaces of vector (that is, R3-valued) functions or distributions will be distin-

guished by bold-face type, so that, for example, L2(R3) = (L2(R3))3. For any space

X(D) of vector functions or distributions on D, the symbol Xdiv(D) will denote the

subspace of all divergence-free (or solenoidal) members of X(D).

We write the inner product in any Hilbert spaceX as 〈·, ·〉
X
and the duality pairing

between any Banach space Y and its norm dual Y ∗ as 〈·, ·〉
Y ∗,Y
. Given Banach spaces

X, Y , and Z, the symbol [X,Y ] stands for the space of all bounded linear operators

from X into Y , the symbol [X,Y ;Z] for the space of all bounded bilinear operators

from X × Y into Z.

Consider the Hilbert spaceW1(R3), whose natural inner product is given by

〈f ,g〉
W1(R3)

=

∫
R3
(∇f) · (∇g) =

∫
R3
((∇× f) · (∇× g) + (∇ · f)(∇ · g)) . (9)

(The first equality is a definition; the second one is easily verified for f ,g ∈ C∞0 (R
3),

from which the general case follows by a density argument.) Define a bounded linear
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isomorphism L1 :W−1(R3)→W1(R3) by

〈L1f ,g〉W1(R3)
= 〈f ,g〉

W−1(R3),W1(R3)
, (10)

for f ∈W−1(R3) and g ∈W1(R3). For every f ∈W−1(R3), the function u = L1f is

the unique (weak) solution, inW1(R3), of Poisson’s equation, −∆u = f . Moreover,

if f ∈W−1
div (R

3), then u = L1f ∈W1
div(R

3) and −∆u = ∇×∇× u = f (in the weak

sense). In fact, L1 restricts to an isomorphism betweenW
−1
div (R

3) andW1
div(R

3).

It is well known (see, for example, [1, Vol. 1, Chapter II.3.1]) that if f is a

distribution on R3 with compact support , then the equation −∆u = f has a unique

distributional solution that vanishes at infinity, namely, the Newtonian potential,

u = G∗f , where G(x) = (4π|x|)−1 for x ∈ R3 \{0}. If f belongs toW−1(R3) and has

compact support, then G∗f ∈W1(R3) and thus, G∗f = L1f . That is, the operator L1

is an extension of the Newtonian potential. Furthermore, if f belongs to L2(R3) and

has compact support, then G ∗ f ∈W2(R3), and as a consequence of the Calderon-

Zygmund theorem, the mapping f 7→ G ∗ f extends to a bounded linear isomorphism

L2 : L2(R3) → W2(R3) (see, for example, [1, Vol. 1, Chapter II.3.2]). For every

f ∈ L2(R3), the function u = L2f is the unique solution, in W2(R3), of −∆u = f .

Moreover, if f ∈ L2div(R
3), then u = L2f ∈W2

div(R
3) and −∆u = ∇×∇×u = f . In

fact, L2 restricts to an isomorphism between L2div(R
3) andW2

div(R
3).

Obviously, both operators, L1 and L2, are just different realizations of (−∆)−1.

In particular, both are extensions of the Newtonian potential and thus coincide on

the intersection of their respective domains of definition. (Note that L2(R3) does

not embed intoW−1(R3), but thatW−1(R3) contains all functions f ∈ L2(R3) with

compact support .) Abusing notation, we will henceforth denote both operators, L1

and L2, by the same symbol, L. Also, we will frequently apply L to functions f

that are defined and square-integrable on some bounded subdomain of R3, with the

understanding that Lf then really means Lf̃ , where f̃ stands for the zero extension of

f to R3. We note that in this case, Lf ∈W1(R3) ∩W2(R3), so that the derivatives

of Lf belong to H1(R3).

Now we are in a position to rigorously define the vector potential and magnetic

field operators A and B needed for the velocity-current formulation of the MHD

equations: Given the magnetic permeability µ, let

A = µL and B = ∇×A = µ∇×L .

The following lemma gathers the properties of A and B that will be needed in

the sequel. Everything follows readily from the corresponding properties of L, as

discussed above. For Part (c) of the lemma, recall (9) and (10).
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Lemma 1.

(a) The operator A is a bounded linear isomorphism between the spaces W−1
(div)(R

3)

andW1
(div)(R

3) as well as between L2(div)(R
3) andW2

(div)(R
3). The operator B is

a bounded linear isomorphism betweenW−1
div(R

3) and L2div(R
3) as well as between

L2div(R
3) and W1

div(R
3).

(b) For every J ∈ W−1
div (R

3) the vector field A = A(J) is the unique solution, in

W1(R3), of ∇×∇×A = µJ and ∇ ·A = 0. The vector field B = B(J) is the

unique solution, in L2(R3), of ∇×B = µJ and ∇ ·B = 0.

(c) For all J,K ∈W−1(R3) with ∇ · J = 0 or ∇ ·K = 0, we have

〈J,A(K)〉
W−1(R3),W1(R3)

= µ−1〈B(J),B(K)〉
L2(R3)

.

(d) If J ∈ L2(Ω) with ∇ · J = 0 in Ω and J · n = 0 on ∂Ω (where Ω is the bounded

Lipschitz domain of Assumption (a) in Section 1), then the zero extension of J

belongs to W−1
div (R

3), and for every K ∈W−1(R3) we have

∫
Ω
J · A(K) = µ−1

∫
R3
B(J) · B(K) .

Lemma 1 provides rigorous justification for the velocity-current formulation of the

MHD equations derived in Section 1. We are now ready to give a precise statement

of the problem to be solved.

Problem (P). Under the assumptions (a)–(h) of Section 1, find u ∈ L2(0, T ;H1(Ω)),

J ∈ L2(0, T ;L2(Ω)), p ∈ L1(0, T ;L2(Ω)), and φ ∈ L1(0, T ;H1(Ω)) such that, in the

sense of distributions,

ρut − η∆u+ ρ(u · ∇)u+∇p− J×B = f in (0, T ) × Ω, (11)

µL(J̃t) + σ
−1J+∇φ− u×B = Eext in (0, T )× Ω, (12)

∇ · u = 0 and ∇ · J = 0 in (0, T ) ×Ω, (13)

u = g and J · n = Jext · n on (0, T ) × ∂Ω, (14)

u = u0 and J = J0 on {0} × Ω, (15)

where B = Bext + µ∇×L(J̃) and J̃ = J+ Jext.

Next, we introduce a number of test function spaces. Let V1 denote the set of

all solenoidal vector fields in C∞0 (Ω) and let V1 and H1 denote the closures of V1 in

H1(Ω) and L2(Ω), respectively. That is,

V1 = {v ∈ H
1(Ω) | ∇ · v = 0 in Ω, v = 0 on ∂Ω} ,

H1 = {v ∈ L
2(Ω) | ∇ · v = 0 in Ω, v · n = 0 on ∂Ω} .
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(These are the test function spaces associated with the fluid velocity u.) Let V2 = V1

and let V2 and H2 denote the closures of V2 in L2(Ω) and W−1(R3), respectively.

That is,

V2 = {K ∈ L
2(Ω) | ∇ ·K = 0 in Ω, K · n = 0 on ∂Ω} ,

H2 = {K ∈W
−1(R3) | ∇ ·K = 0 in R3, K = 0 on R3 \ Ω} .

(These are the test function spaces associated with the current density J.) Finally,

let

V = V1 × V2, V = V1 × V2, and H = H1 ×H2 .

As subspaces of H1(Ω)× L2(Ω) and L2(Ω)×W−1(R3), respectively, both V and H

are Hilbert spaces, and V is compactly and densely embedded in H.

To obtain a weak formulation of Problem (P), multiply Equations (11) and (12)

by v ∈ V1 and K ∈ V2, respectively, then integrate over Ω and sum up. After some

regrouping of terms, several integrations by part, and an application of Lemma 1(d),

we arrive at a variational equation of the form

d

dt
e((u, J̃), (v,K)) + a0((u,J), (v,K))

+ b0((u,B), (u,J), (v,K)) =

∫
Ω
f · v +

∫
Ω
Eext ·K .

(16)

Here e and a0 are bilinear forms, defined by

e((v1,K1), (v2,K2)) = ρ

∫
Ω
v1 · v2 + µ

−1
∫
R3
B(K1) · B(K2) , (17)

for (v1,K1), (v2,K2) ∈ L2(Ω)×W−1(R3), and

a0((v1,K1), (v2,K2)) = η

∫
Ω
(∇v1) · (∇v2) + σ

−1
∫
Ω
K1 ·K2 , (18)

for (v1,K1), (v2,K2) ∈ H1(Ω)× L2(Ω), while b0 is a trilinear form, defined by

b0((v0,B0), (v1,K1), (v2,K2)) = ρ

∫
Ω
((v0 · ∇)v1) · v2

+

∫
Ω
((K2 ×B0) · v1 − (K1 ×B0) · v2) ,

(19)

for (v0,B0) ∈ L3(Ω)×L3(Ω) and (v1,K1), (v2,K2) ∈ H1(Ω)×L2(Ω). All three forms

are bounded with respect to the product norms on their respective domains. (As for

b0, observe that H
1(Ω) embeds continuously into L6(Ω) and use Hölder’s inequality.)

For future reference we point out that

b0((v0,B0), (v1,K1), (v2,K2)) = −b0((v0,B0), (v2,K2), (v1,K1)) , (20)

provided that v0 is solenoidal in Ω and that v1 or v2 vanishes on ∂Ω. Finally we

note that b0, as given in (19), is also well defined (and bounded with respect to the
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appropriate norms) for (v0,B0) ∈ L2(Ω) × L2(Ω), (v1,K1) ∈ H1(Ω) × L2(Ω), and

(v2,K2) ∈ L∞(Ω)× L3(Ω).

Using the liftings u∗ and J∗ of the boundary data g and Jext (recall the assump-

tions (c) and (d) of Section 1), we now substitute u = u∗ + û and J̃ = J∗ + Ĵ in

Equation (16) and obtain the following variational equation for the new unknowns

û ∈ L2(0, T ;V1) and Ĵ ∈ L2(0, T ;V2):

d

dt
e((û, Ĵ), (v,K)) + a0((û, Ĵ), (v,K)) + a(t, (û, Ĵ), (v,K))

+ b((û, Ĵ), (û, Ĵ), (v,K)) = `(t, (v,K)) .
(21)

Here b is a bounded trilinear form on V × V × V , defined by

b((v0,K0), (v1,K1), (v2,K2)) = b0((v0,B(K0)), (v1,K1), (v2,K2)) , (22)

while a(t, ·, ·) and `(t, ·), for t ∈ (0, T ), are bounded bilinear and linear forms on V ×V

and V , respectively, defined by

a(t, (v1,K1), (v2,K2)) = b0((u
∗(t),Bext(t) + B(J

∗(t))), (v1,K1), (v2,K2))

+ b0((v1,B(K1)), (u
∗(t),J∗(t)), (v2,K2))

(23)

and

`(t, (v,K)) =

∫
Ω
f(t) · v +

∫
Ω
Eext(t) ·K

− e((u∗t (t),J
∗
t (t)), (v,K)) − a0((u

∗(t),J∗(t)), (v,K))

− b0((u
∗(t),Bext(t) + B(J

∗(t))), (u∗(t),J∗(t)), (v,K)) .

(24)

Regarding the boundedness of the trilinear form b on V × V × V , recall that the

operator B is bounded from L2(R3) intoW1(R3) and hence, from L2(Ω) into H1(Ω)

(when composed with zero extension and restriction operators). Since H1(Ω) embeds

continuously into L3(Ω), this shows in fact that b, as given in (22), is well defined

and bounded not only on V × V × V , but on the triple product of H1(Ω) × L2(Ω).

Moreover, since B mapsW−1(R3) continuously into L2(R3), b is also well defined and

bounded on the product of L2(Ω)×W−1(R3), H1(Ω)×L2(Ω), and L∞(Ω)×L3(Ω).

To simplify notation, we now let u = (û, Ĵ) and v = (v,K) and write Equa-

tion (21) as
d

dt
e(u, v) + a0(u, v) + a(t, u, v) + b(u, u, v) = `(t, v) . (25)

Next we note that the bilinear forms e and a0, as defined in (17) and (18), restrict

to inner products on H and V , respectively, equivalent to the natural inner products

that these spaces inherit from L2(Ω) ×W−1(R3) and H1(Ω) × L2(Ω). (As for H2,

recall from Lemma 1 that B is a bounded linear isomorphism between the spaces

W−1
div (R

3) and L2div(R
3); in fact, µ−1〈B(K1),B(K2〉L2(R3) = µ〈K1,K2〉W−1(R3)

for

all K1,K2 ∈W
−1
div (R

3). As for V1, apply Poincare’s inequality.)
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We will henceforth consider H and V as Hilbert spaces endowed with the inner

products

〈·, ·〉
H
= e|H×H and 〈·, ·〉

V
= a0|V×V .

Moreover, we will identify H and its norm dual H∗, so that we have

V ↪→ H = H∗ ↪→ V ∗,

with compact dense embeddings. With this identification, we can write

e(v1, v2) = 〈v1, v2〉H = 〈v1, v2〉V ∗,V ,

for v1 ∈ H and v2 ∈ V . In addition, we introduce a linear isomorphism L ∈ [V, V ∗],

a mapping A ∈ L2(0, T ; [V, V ∗]), and a bilinear operator B ∈ [V, V ;V ∗] such that

a0(v1, v2) = 〈v1, v2〉V = 〈Lv1, v2〉V ∗,V ,

a(t, v1, v2) = 〈A(t)v1, v2〉V ∗,V ,

b(v0, v1, v2) = 〈B(v0, v1), v2〉V ∗,V ,

for all v0, v1, v2 ∈ V and t ∈ (0, T ). Finally, we write

`(t, v) = 〈`(t), v〉
V ∗,V
,

for v ∈ V and t ∈ (0, T ). This allows us to replace Equation (25), which is to be

satisfied for all v ∈ V , by the abstract evolution equation

u̇+ Lu+A(t)u+B(u, u) = `(t) .

Moreover, the initial conditions (15) for the original unknowns u ∈ L2(0, T ;H1(Ω))

and J ∈ L2(0, T ;L2(Ω)) are equivalent to an initial condition of the form u(0) = u0

for the new unknown u = (û, Ĵ) = (u − u∗,J − J∗) ∈ L2(0, T ;V ). The assumptions

(c)–(h) of Section 1 certainly guarantee that u0 = (u0 − u∗(0),J0 − J∗(0)) ∈ H and

that ` ∈ L2(0, T ;V ∗). We thus arrive at the following abstract version of Problem (P).

Problem (P0). Given u0 ∈ H and ` ∈ L2(0, T ;V ∗), find u ∈ L2(0, T ;V ) such that

u̇+ Lu+A(t)u+B(u, u) = `(t) a.e. in (0, T )

and u(0) = u0 .
(26)

Note that if u ∈ L2(0, T ;V ), then Lu+A(·)u+B(u, u) ∈ L1(0, T ;V ∗). Therefore,

the initial-value problem (26) is meaningful and equivalent to an integral equation in

the space V ∗, namely,

u(t) = u0 +

∫ t
0
(`(s)− Lu(s)−A(s)u(s)−B(u(s), u(s))) ds for all t ∈ [0, T ].

11



For this, it would of course suffice to assume that u0 ∈ V ∗ and ` ∈ L1(0, T ;V ∗), but

we will need the stronger assumptions of Problem (P0) to obtain the a-priori estimates

necessary to prove the following existence theorem.

Theorem. Problem (P0) has a solution u ∈ L2(0, T ;V ), which is weakly continuous

as a mapping from [0, T ] into H.

Before giving the proof, we note that the above theorem implies the global weak

solvability of the original initial-boundary value problem, Problem (P). Indeed, if u =

(û, Ĵ) ∈ L2(0, T ;V ) is a solution of Problem (P0) with u0 = (u0 − u∗(0),J0 − J∗(0))

and ` given by (24), then the functions u = u∗ + û and J = J∗ + Ĵ belong to

L2(0, T ;H1(Ω)) and L2(0, T ;L2(Ω)), respectively; the divergence constraints (13),

the boundary conditions (14), and the initial conditions (15) are all satisfied (in a

weak sense, of course); and it is a matter of routine to construct functions p in

L1(0, T ;L2(Ω)) and φ in L1(0, T ;H1(Ω)) such that the equations (11) and (12) hold

in the sense of distributions. (In constructing p and φ, one simply employs some

well-known properties of the gradient operator: it maps L2(Ω) onto the polar set of

V1 in H
−1(Ω) and maps H1(Ω) onto the orthogonal complement of V2 in L

2(Ω); see,

for example, [2, Chapter I.2.2].)

3. GALERKIN APPROXIMATION AND PROOF OF EXISTENCE

Since we have V ↪→ H = H∗ ↪→ V ∗, with compact dense embeddings, the isomorphis-

m L : V → V ∗ induces a positive selfadjoint operator L0 with compact inverse in the

Hilbert space H. Let (wj)j∈N be a complete orthogonal sequence of eigenvectors of

L0. By definition of the operator, the sequence (wj)j∈N is complete and orthogonal

in V and V ∗ as well.

For n ∈ N let Vn = span(w1, . . . , wn) and let Pn ∈ [H,H], Qn ∈ [V, V ], and

Q∗n ∈ [V
∗, V ∗] denote the orthogonal projections of H, V , and V ∗, respectively, onto

Vn. By our choice of the basis (wj)j∈N, the projection Qn is simply the restriction

of Pn to V , and the projection Q
∗
n is an extension of Pn to V

∗; moreover, Q∗n is the

Banach space dual of Qn.

We now consider the following finite-dimensional approximation of Problem (P0).

Problem (Pn). Given u0 ∈ H and ` ∈ L2(0, T ;V ∗), find un ∈ L2(0, T ;Vn) such that

u̇n +Q
∗
n(Lun +A(t)un +B(un, un)) = Q

∗
n `(t) a.e. in (0, T )

and un(0) = Pnu0 .
(27)

Lemma 2. For every n ∈ N, Problem (Pn) has a unique solution un ∈ L2(0, T ;Vn).

The sequence (un)n∈N is bounded in L
2(0, T ;V ) and in L∞(0, T ;H).

12



Proof. For every n ∈ N, Problem (Pn) is simply an initial-value problem (in the

sense of Carathéodory) for an ordinary differential equation in the finite-dimensional

Banach space Vn. As such it has a (unique) maximal solution un : In → Vn, defined

and absolutely continuous on a relatively open subinterval In of [0, T ] with 0 ∈ In.

Since un satisfies the differential equation in (27) almost everywhere in In, we have

〈u̇n, un〉V ∗,V + 〈Lun, un〉V ∗,V

+ 〈A(t)un, un〉V ∗,V + 〈B(un, un), un〉V ∗,V = 〈`(t), un〉V ∗,V ,

that is,

〈u̇n, un〉H + 〈un, un〉V + a(t, un, un) + b(un, un, un) = `(t, un) .

Recalling the definitions (22) and (23) of the forms a and b and exploiting the

antisymmetry property (20) of the form b0, we see that b(un, un, un) = 0 and that

a(t, un, un) = b(un, u
∗, un) = −b(un, un, u∗), where u∗ = (u∗,J∗). It follows that

1

2

d

dt
‖un‖

2

H
+ ‖un‖

2

V
= `(t, un) + b(un, un, u

∗) .

From the discussion following the definition of b, we know that b is bounded (say,

with norm β∞) on H × V × (L∞(Ω))2. Thus, b(un, un, u∗) ≤ β∞‖u∗‖∞‖un‖H‖un‖V ,

where ‖u∗‖
∞
denotes the norm of u∗ = (u∗,J∗) in (L∞((0, T ) × Ω))2. We conclude

that
d

dt
‖un‖

2

H
+ 2‖un‖

2

V
≤ 2 (‖`(t)‖

V ∗
+ β∞‖u

∗‖
∞
‖un‖H) ‖un‖V

≤ (‖`(t)‖
V ∗
+ β∞‖u

∗‖
∞
‖un‖H)

2 + ‖un‖
2

V

and thus,
d

dt
‖un‖

2

H
+ ‖un‖

2

V
≤ 2 (‖`(t)‖2

V ∗
+ β2∞‖u

∗‖2
∞
‖un‖

2

H
) . (28)

Dropping the second term on the left-hand side of (28) and integrating the in-

equality with respect to t ∈ In, we obtain

‖un(t)‖
2
H
≤ ‖un(0)‖

2
H
+ 2

∫ t
0
(‖`(s)‖2

V ∗
+ β2∞‖u

∗‖2
∞
‖un(s)‖

2
H
) ds

≤ ‖u0‖
2

H
+ 2‖`‖2

L2(0,T ;V ∗)
+ 2β2∞‖u

∗‖2
∞

∫ t
0
‖un(s)‖

2

H
ds .

Now Gronwall’s lemma implies that

‖un(t)‖
2

H
≤ (‖u0‖

2

H
+ 2‖`‖2

L2(0,T ;V ∗)
) exp(2β2∞‖u

∗‖2
∞
T ) , (29)

for all t ∈ In. In particular, ‖un‖H is bounded on In, and this proves that In = [0, T ]

and un ∈ L∞(0, T ;H). In fact, since the bound in (29) does not depend on n, the

whole sequence (un)n∈N is bounded in L
∞(0, T ;H).
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Next, we integrate (28) from 0 to T and obtain

‖un(T )‖
2
H
− ‖un(0)‖

2
H
+ ‖un‖

2
L2(0,T ;V )

≤ 2 (‖`‖2
L2(0,T ;V ∗)

+ β2∞‖u
∗‖2
∞
‖un‖

2
L2(0,T ;H)

) ,

which implies

‖un‖
2

L2(0,T ;V )
≤ ‖u0‖

2

H
+ 2 (‖`‖2

L2(0,T ;V ∗)
+ β2∞‖u

∗‖2
∞
‖un‖

2

L∞(0,T ;H)
T )

and thereby, the boundedness of the sequence (un)n∈N in L
2(0, T ;V ).

Corollary. The sequence (un)n∈N of Lemma 2 contains a subsequence that con-

verges, weakly in L2(0, T ;V ), strongly in L2(0, T ;H), and weakly∗ in L∞(0, T ;H), to

a function u ∈ L2(0, T ;V ) ∩ L∞(0, T ;H).

Proof. Lemma 2 immediately implies the existence of a subsequence (ukn) of (un)

that converges, weakly in L2(0, T ;V ) and weakly∗ in L∞(0, T ;H), to some function

u ∈ L2(0, T ;V ) ∩ L∞(0, T ;H). Furthermore, we have

u̇n = Q
∗
n(`(t)− Lun −A(t)un −B(un, un)) ,

almost everywhere in (0, T ), for n ∈ N. Since (un) is bounded in L2(0, T ;V ) and

the orthogonal projections Q∗n are uniformly bounded in [V
∗, V ∗], it follows that

(u̇n) is bounded in L
1(0, T ;V ∗). But then a standard compactness argument (see,

for example, [10, Theorem III.2.3]) applies and shows that ukn → u strongly in

L2(0, T ;H).

The above convergence results allow us to “pass to the limit” in Problem (Pn)

and to prove that the limit point u of the sequence (un) is a solution of Problem (P0).

To argue the case, note that the initial-value problem (26) can be equivalently written

in the following variational form:

−〈u0, v〉H −
∫ T
0
〈u(t), v〉

H
ϕ̇(t) dt

+

∫ T
0
〈u(t), v〉

V
ϕ(t) dt +

∫ T
0
a(t, u(t), v)ϕ(t) dt

+

∫ T
0
b(u(t), u(t), v)ϕ(t) dt =

∫ T
0
`(t, v)ϕ(t) dt

(30)

for all v ∈ V and all ϕ ∈ C∞([0, T ]) with ϕ(0) = 1 and ϕ(T ) = 0. Similarly, the

initial-value problem (27) is equivalent to

−〈Pnu0, v〉H −
∫ T
0
〈un(t), v〉H ϕ̇(t) dt

+

∫ T
0
〈un(t), v〉V ϕ(t) dt +

∫ T
0
a(t, un(t), Qnv)ϕ(t) dt

+

∫ T
0
b(un(t), un(t), Qnv)ϕ(t) dt =

∫ T
0
`(t,Qnv)ϕ(t) dt

(31)
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for all v ∈ V and all ϕ ∈ C∞([0, T ]) with ϕ(0) = 1 and ϕ(T ) = 0. It thus suffices to

show that each term in (31), with n replaced by kn, converges to the corresponding

term in (30) as n→∞.

The only term that requires some thought is, naturally, the one involving the

trilinear form b. We write it as

∫ T
0
b(un(t), un(t), Qnv − v)ϕ(t) dt +

∫ T
0
b(un(t), un(t), v)ϕ(t) dt (32)

and observe that

∫ T
0
b(un(t), un(t), Qnv − v)ϕ(t) dt ≤ β ‖ϕ‖L∞(0,T )‖un‖

2

L2(0,T ;V )
‖Qnv − v‖V ,

where β denotes the norm of b as a trilinear form on V ×V ×V . Since (un) is bounded

in L2(0, T ;V ) and ‖Qnv − v‖V → 0 as n→∞, the first term in (32) vanishes in the

limit. For the second term we have

∫ T
0
b(un(t), un(t), v)ϕ(t) dt ≤ β∞‖ϕ‖L∞(0,T )‖v‖(L∞(Ω))2‖un‖L2(0,T ;H)‖un‖L2(0,T ;V ) ,

where β∞ denotes, as in the proof of Lemma 2, the norm of b as a trilinear form on

H×V × (L∞(Ω))2. Since ukn → u, strongly in L
2(0, T ;H) and weakly in L2(0, T ;V ),

it follows that

∫ T
0
b(ukn(t), ukn(t), v)ϕ(t) dt →

∫ T
0
b(u(t), u(t), v)ϕ(t) dt ,

as desired.

Since the convergence of all other terms in Equation (31) is even easier to verify,

we conclude that the limit point u of the sequence (un) is indeed a solution of Prob-

lem (P0). As such, u is (absolutely) continuous as a mapping from [0, T ] into V
∗.

Also, we know already that u belongs to L∞(0, T ;H). But then a routine argument

(see, for example, [10, Lemma III.1.4]) proves that u is in fact weakly continuous as

a mapping from [0, T ] into H. That is, the initial condition u(0) = u0 is satisfied in

the sense of weak convergence in H (instead of just strong convergence in V ∗).

This concludes the proof of the existence theorem stated at the end of Section 2

and thereby, the proof of global weak solvability of our original initial-boundary value

problem, Problem (P).
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