Chapter 5
Strategies for Instruction

Probing Questions

1. How do teachers stimulate interest in a lesson?

2. What are some effective questioning techniques?

3. What constitutes a good question? Write down two examples of what you think would be good questions to assess student understanding.

4. What are some strategies that are used in the classroom to individualize instruction? Do you think they could be used in physical education?

There is an ongoing debate in education concerning whether teaching is an art or a science. In reality, good teaching encompasses both the art and the science of teaching. Let us examine the cello player in a symphony. As a musician, the cellist is able to bring to life and tell a story with the use of the instrument. Yet, it is the science of how the cello is assembled with proper attention given to string thickness, string tension, and string length that produces the melodic sounds one hears when the instrument is played. It is the same with teaching. Your ability to manage and orchestrate various classroom events into an environment conducive to learning that is indicative of the art of teaching. The content and the assessment of learning embody the science. It is the combining of the two that brings the classroom to life. How successfully you combine these two features will determine how dynamic and exciting your lessons are for children.

The question many teachers ask themselves is, “How do I present content so that all students benefit from instruction? This challenge occurs when the teacher puts on her conductor shoes. Just as a conductor must find a way to blend all the musical instruments into a harmonic composition, the teacher must design learning experiences in the same way, so that each child benefits from and contributes to the lesson. This is a truly difficult task when you think about working with children who might have trouble sitting still in class, like to call out when you or another student are talking, appear tired
or disinterested in the material, utilize different learning styles, or have differing ability levels.

The truth about teaching is that it is a sophisticated and continually evolving process. Further, there is no one “best” approach for delivering the content. The methods you use for delivering instruction are as varied as the students who sit in the seats in your classroom. Teachers must account for the many contextual variables that affect the teaching learning process. The number of children in a class and the facilities you have to work with are just two that come to mind. In this sense, teachers must realize that no two classrooms are the same and no two students alike. Although, there is no one best approach for teachers to follow, we do believe there are a number of strategies that you can use that will help them orchestrate the variables to provide quality instruction to students. This chapter will examine key issues related to instruction, with the aim of presenting some strategies that will help you in structuring dynamic lessons for children.

Instructional Strategies

Although there are numerous ways to present lesson content to children, the components for teaching a lesson are similar and rarely change whether you are teaching in the classroom or the gymnasium. We believe that there is a foundation from which to build a lesson. Table 5-1 shows a visual of what we consider the anatomy of a lesson. Teaching strategy information is shown for the different phases of a lesson. This chapter will go through each strategy discussing it within the context of a lesson.

Table 5-1. Anatomy of a Lesson

<table>
<thead>
<tr>
<th>Lesson Part</th>
<th>Teacher Strategy/Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instant Activity</td>
<td>Instant Activity</td>
</tr>
<tr>
<td>Beginning the Lesson</td>
<td>Set Induction</td>
</tr>
<tr>
<td></td>
<td>Scaffolding</td>
</tr>
<tr>
<td>Content of Lesson</td>
<td>Instructional Action</td>
</tr>
<tr>
<td></td>
<td>Demonstration</td>
</tr>
<tr>
<td></td>
<td>Questioning</td>
</tr>
<tr>
<td></td>
<td>Advanced Questioning</td>
</tr>
<tr>
<td></td>
<td>Checking for Understanding</td>
</tr>
<tr>
<td></td>
<td>Monitoring</td>
</tr>
<tr>
<td></td>
<td>Task Presentation</td>
</tr>
<tr>
<td></td>
<td>Direct Instruction</td>
</tr>
<tr>
<td></td>
<td>Problem Solving</td>
</tr>
<tr>
<td></td>
<td>Feedback</td>
</tr>
<tr>
<td></td>
<td>Individualizing</td>
</tr>
<tr>
<td></td>
<td>Instruction</td>
</tr>
<tr>
<td>Closure/Review</td>
<td>Questioning</td>
</tr>
<tr>
<td></td>
<td>Checking for Understanding</td>
</tr>
</tbody>
</table>
The Instant Activity

Nearly all elementary school children love to be active, and considering that they spend most of their day sitting, it is nice to be able to get up and move. Unfortunately, one of the things that we see many physical education teachers do on arrival at the work area is to sit the children down to explain the day’s tasks.

In this book, we encourage you to provide children with what is known as an “instant activity.” An instant activity is a brief movement task that children will begin on immediate arrival at the work area. The instant activity suggests to children that you as a teacher value movement and it conveys the message to children that being active is important. As well as being an opportunity for children to burn off a little steam, it can be used to help reinforce a skill from a previous lesson, or it can be used to develop a fitness component.

In recalling the intention of “instant” and “activity,” we need to find ways in which we can get children started as soon as possible. Some physical education teachers make the mistake of having the instant activity so complex that the children have to wait and listen for an explanation of two or more minutes before they begin. This totally defeats the purpose of the exercise.

There are two options for the presentation of the instant activity. The first is to simply verbalize to students what you want them to do. Alternately, you may use a blackboard or whiteboard in your gym to present the activity. When presenting an instant activity on this board, there should be a minimum of reading, and the activity should involve a task the students already know.
Figure 5-1. Instant Activity

Box 5-1 provides examples of instant activities that may be read to students, while Figure 5-2 shows an example of how to write an instant activity on a whiteboard using a minimum of instruction.

Box 5-1. Instant Activities Presented Verbally

First Grade.
I want you to get a ball and get into self-space. Now dribble the ball while trying to dribble around various body parts like between the legs, behind the back, or around the body. Keep dribbling in self-space until I tell you to freeze.

Third Grade.
Take a ball from the basket, and move to one of the spots you see in general space. Start volleying the ball with various body parts. Let’s start trying to volley just using two different parts. Once you are successful with two, try three in a row. Keep throwing until I tell you to freeze.
Fifth Grade.

Find a partner.

Get a short handled lacrosse scoop each, and find a free space.

Work on throwing and catching the ball

Figure 5-2. Instant Activity Instructions on a Blackboard

There are a number of other benefits of the instant activity beyond providing children with a movement opportunity. The instant activity also allows you a moment to gather your thoughts before the lesson begins. Having come straight from the classroom it is nice to have this brief period where you can switch into physical education teacher mode. A further advantage of instant activity is that it seems to make the next phase of the lesson – the set induction – easier to present. Children seem to be more attentive to instruction when they have had some time at the beginning of the lesson when they have been active.

One of the other advantages of instant activity is that it takes you off center stage. This removal from the role of class leader allows you to have a private chat with an individual student about their behavior in a previous lesson, or to check on students who say they are not feeling well. You might also take this time to work exclusively on skill development with a child with a disability.

Beginning the Lesson

Set Induction

If you were to watch the beginning of any physical education lesson, you would most likely see the teacher introducing the topic for the day. While the manner in which these teachers complete that introduction is often very different, the *purpose* of that introduction is standard. That is, the teacher is giving the student information about the “what” and “why” of the lesson. Box 5-2 has one example for a lesson on balancing. This process of lesson introduction is called the *set induction*. It is sometimes referred to as the “anticipatory set.” We know that when students know what they are going to be working on for the day and why working on it is important, it helps to alleviate some of the uncertainty and the questions that students come with to the gym.
We find that consistent use of a set induction helps to reduce the number of students who ask the question, “What are we doing today?”

Box 5-2. Set Induction

Today we are going to pretend that we are going to the circus. One thing that you would see at the circus, besides elephants and tigers, would be the person who walks across the high wire. The wire is really high, so the person wants to make sure that they have good balance so they won’t fall off. One thing they do to ensure that they have good balance is to use helicopter arms. Yoshiro, can you show me what you think I mean by helicopter arms? That's right, arms out to the side as straight as they can be. Today, while we are at pretending to walk the high wire, let’s remember to use those helicopter arms.

The set induction serves to set the stage as to what the students will be learning. It is used to motivate and spark the interest of the students. Whether you use a metaphor, a riddle, a story, a picture, or a question to bring to life the topic of the day, the set induction is used to make clear the connections between content-specific material and its generalizability to contexts outside the classroom.

Scaffolding

Another purpose for the set induction is for you to make explanations meaningful and connect new information to something familiar for the student (Dodds, 1984). The process of linking students’ previous knowledge, previous work, or past experience with what will be covered in the present or future is called scaffolding. Thus, you use the students’ past experience to set the foundation for building a bridge to present and future skills. Let us consider a lesson on dribbling. In the lesson, you are trying to connect the children’s ability to dribble with control, to using that control while moving around space and obstacles in front of them. It is the next step (dribbling while on the move) that is the topic of this present lesson (see Box 5-3).
Box 5-3. Example of Scaffolding

On Monday, we talked about dribbling with control. What is one important thing to remember about controlling the dribble? Kelvin? Right, keep the ball close to your body. Today, we will expand on that idea. Today, I have placed many obstacles in general space that you are going to have to dribble around. The key is to maintain control while dribbling on the move because for every object you touch or for every time you lose control of your dribble, you have to dribble in self-space for five seconds before you will be allowed to move again.

Eventually, the next level on the dribbling scaffold would involve you showing the children how learning to dribble with control is important in games like basketball or team handball. When children can relate how past experiences in lessons tie to future development it helps them develop a better understanding of how the content of one individual lesson relates to past, present, and future concepts.

Content of the Lesson

Demonstration

Children benefit from seeing a visual demonstration of the skill the teacher wants them to perform. It serves as a way of communicating to the student specific information about how to perform a task or skill. We know that a demonstration is most beneficial for students in the beginning stages of skill practice (Pollack & Lee, 1992) and is most effective when children are provided critical elements (cues) for performing the skill. Providing these cues during the demonstration has been shown to improve the form or quality of performance (Roach & Burwitz, 1986), and is particularly useful to young children when they are acquiring a new movement pattern (McCullagh, Stiehl, & Weiss, 1990).

Since students benefit from seeing a demonstration of the skill, we recommend that you adhere to the following suggestions for presenting demonstrations to students:

1. There is no way you can possibly tell the students everything they need to know about how to perform a skill in one lesson. In fact, too much information usually leads to information overload in children and they have a hard time processing all the things the teacher is saying. Thus, with young children, talking during the demonstration becomes a distraction for them. Therefore, we suggest in the initial demonstration of the skill that you show the skill with no talk. This helps the children to focus only on one thing, the skill itself.

2. After the initial demonstration with no talk, provided another demonstration in slow speed while providing students with the cues or critical elements of the skill you want them to practice. Keep the cues brief. The demonstration should be accurate in that it shows the cues that are being emphasized during the lesson.
For instance, in a dribbling lesson make sure students focus on using the “pads of the fingers” or keeping a “flexible wrist.”

3. The demonstration should first be performed at full speed and under skill conditions as close as possible to the way the skill will be used during practice. Let us take a lesson on dribbling that has the children dribbling around cones that have been placed in general space. The teacher would want to use the cones in space to provide the demonstration because this communicates to the students what the skill is supposed to look like during practice. If you cannot demonstrate the skill accurately, see if you have a student who can perform the skill or have a special guest to help demonstrate the skill. It is extremely important for children to have an accurate picture of what the skill.

4. The last aspect of providing students with a demonstration is to ensure that you give the students different views of the skill to be practiced. That is you will want to provide a front view and a side view emphasizing the cues that you want the students to know and practice during the lesson. Once again, let us take the lesson on dribbling where the lesson focus is on dribbling using a flexible wrist. We believe it is more beneficial for the students to see the wrist action straight on and well as how the wrist moves from a side view. We believe this will help the student better understand the cue you want the student to perform.

Questioning and Problem Solving

Throughout any given lesson in physical education (or indeed those in the classroom), teachers will use the strategy of questioning or problem solving to stimulate student involvement. In this book, we will refer to questioning and problem solving as though they are the same strategy. Although we recognize that these could be considered two different strategies, we believe that good questioning is embedded with problem solving strategies.

Questioning and problem solving fit comfortably with the constructivist approach to teaching that celebrates the concept of children constructing knowledge. One basic tenet of constructivism is that students should be active participants in the learning process and not passive receivers of information. Thus, we believe that the use of good questioning and problem solving will actively engage the learner by fostering critical thinking skills, thereby helping students create their own meaning by interacting and participating in the learning process.
Framing questions

The first step in presenting the students with a question is deciding how the question will be framed. This decision is centered on the type of information the teacher wants the student to discover. One problem that many beginning teachers have with questioning is they have a tendency to ask closed or rhetorical questions. A closed question requires a simple yes or no answer or a brief response. These questions do not require complex thought to reach the answer and usually are used to help students recall information. One example of a closed question would be, “So do we use our finger pads or our palms when we are dribbling?”

Rhetorical questions are not real questions because you are not really expecting an answer from the student. More often, they are statements that take the form of a question that is often used to get their own mind clear. Examples of rhetorical questions that might be asked include:

- “We had fun today, didn’t we?”
- “Can someone get the balls out of the basket?”
- “We learned how to dribble while using the pads of our fingers, are there any questions about what we covered today?”

There are several ways you can frame a question and each will require students to give a different response. Those that require students to use higher levels of cognitive understanding include:

- Questions of clarification
- Questions to probe student understanding of consequence
- Questions that seek justification or reasoning for a position or action

Table 5-2 shows a broader range of examples of questions that require different levels of thinking. Using questions where students have to make connections to bridge information is critical to actively involving students in content and encouraging them think for themselves.

Thus, a good question enhances and extends learning while fostering a desire in the student to know more. The purpose of these higher-level questions is to take children beyond basic recall and challenge them to build on previous experience and prior knowledge to come to new levels of understanding.
Table 5-2. Types of Questions

<table>
<thead>
<tr>
<th>Type of Question</th>
<th>Example Questions</th>
</tr>
</thead>
</table>
| Clarification | “What do I mean when I say dribble your ball at a low level?”
 | “Can you show me an example of your center of gravity being over the base of support?”
 | “How do we ensure the ball goes in a forward direction when we are volleying?” |
| Consequence | “If I don’t keep the ball close to my body while dribbling, what would a defender be able to do more easily?”
 | “The result of not extending my arms out to the side while balancing, would be?”
 | “What do you think will happen if I volley the ball using a tilted surface instead of a flat surface?” |
| Justification or Reasoning | “Why would it be important to keep my head up while dribbling?”
 | “What do you think is the most critical cue or element in balancing?”
 | “Is there ever a time in volleying when using a flat surface is not desirable?” |

Receiving responses

Have you ever watched the game show Jeopardy? In this show the contestants have to phrase their answers in the form of a question. If contestants fail to do so, their answer is considered automatically incorrect. At home it is easy to play along with the contestants and yell the answer out without worrying about whether it will cost you a thousand dollars. If you can imagine what a hard time adults have not answering immediately when asked, children have the same trouble. Callout is a term used to describe when children respond to a question simultaneously and immediately (Graham, 2001). We find that allowing children to callout is a less effective strategy of receiving responses than having children raise the hand to respond. Once again, the way the question is phrased leads to spontaneous responding or calling out. Rhetorical questions and recall questions such as “What sport does Michael Jordan play?” are especially prone.

When teachers reinforce students calling out answers without requiring hands up, experience has shown that children will continue to callout the answer at ever increasing decibels to get the teacher’s attention. While it is stimulating to see students this excited about answering a question, there are a number of reasons why we prefer children to raise their hands. These include:

- We may intend to ask a specific student.
- We may want to get an idea of how many children think they know the answer.
• Some children take longer to develop their answers and callout provides them either a distraction or the correct response.
• We may even want children to provide a movement answer.

One classroom teacher has suggested a more effective strategy for receiving responses from students that utilizes a system of oral points to keep track of student performance or responses to questions. Students are awarded a point for each correct response they give in class. Once a student accumulates a predetermined amount of points, the student is either given a particular grade or is eligible for a reward. She suggests that students will work for these oral points in lieu of other rewards, such as stamps or candy. The teacher could create the “Physical Education Response Club” where students earn a certain number of points in order to become members. Clearly, the teacher must establish a system that allows each child the opportunity to respond if this strategy is employed. A checklist is a viable option for recording and tracking student points. Students can also be empowered to keep track of the points themselves by having them keep the information in a student portfolio.

Wait time

There was a story about a teacher who liked to drink bottled water while he taught. According to his students, the teacher achieved notoriety for using the phrase, “You think, while I drink” after asking a question. Students were to wait until he had taken a sip of his water before they could respond. His contention was that he used that time to encourage children to think before responding and that invariably students were more likely to respond when the pressure to answer quickly was nullified. As we have noted, some children need more time to think about the question and formulate an answer before responding. Thus, this strategy provides children who process information more slowly the opportunity to actively engage in the question/answer session of the class without feeling awkward or put-on-the-spot.

Also, as we have discussed before how the teacher asks questions allows some students to excuse themselves from the question and answer process. For example, if you ask, “Who can tell me...?” or “Can anyone name...?” students realize quickly that they are not required to answer the question. Thus, by using wait time and good questions you fail to allow students the comfort of disassociating themselves during instruction because of your behavior. Wait time also forces students to think through possible answers to the question in the event that you do call on them. Below are some examples of how you might phrase questions to allow for wait time:

• “There are three critical cues we need to remember while dribbling a ball with our hands, name them...(wait)....Desiree”
• “In a moment I’m going to call on someone to tell me, how we can make our pelican stand more stable…”
• “I’m thinking of a person’s name who I want to answer the following question. “Where does the ball go when we contact the ball with our arms held in front of us at shoulder level?”
Students need to be encouraged to answer questions and participate in learning experiences. Providing wait time allows them time to reflect, formulate, ask, answer, and discuss questions.

Advanced Questioning Techniques

K-W-L

As noted, the main purpose of posing quality questions is to improve the quality of your students’ answers. One additional strategy that seems to improve questioning quality comes from the classroom literature on reading. This strategy is known as K-W-L (i.e., Know, Want, and Learn). The “K” represents the first step in questioning and is used to establish what the student already knows. For example, asking students what they know about dribbling and making note of their responses. The next step is to use that information to help students understand important concepts or information you “Want” them to learn. Finally, last step requires establishing what the students learned about the topic. See Table 5-3 for an example of how to use K-W-L.

<table>
<thead>
<tr>
<th>KWL</th>
<th>Example Questions</th>
<th>Possible Student Responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>Tell me everything you know about dribbling?</td>
<td>“Have to use your hand” “Use it in basketball” “Try to keep it low”</td>
</tr>
<tr>
<td>W</td>
<td>We know that we use our hand to dribble the ball in basketball. In the real game, people try to steal the ball away from you while you are dribbling. So we want to be able to control the ball so they will have a harder time trying to steal it. So what is something you think we could do to make sure we keep better control of the ball?</td>
<td>“Use the pads of you fingers” “Flexible wrist”</td>
</tr>
<tr>
<td>L</td>
<td>Tell me one thing you can do to be a better dribbler.</td>
<td>“Use the pads of fingers” “Keep the wrist loose”</td>
</tr>
</tbody>
</table>

This strategy relies on proven brain research in that it stresses prior knowledge as the stepping off point when introducing a new topic, concept, or unit. It also relies on that combination of prior knowledge with new information to form a new concept. When assessing what has been learned, the “L” part of “KWL”, is extremely useful because it becomes very clear what students have actually learned, and what needs revisiting.

Convergent Problem Solving

In conjunction with the questioning technique, there are different types of problem-solving questions that stimulate the exploration of concepts and facilitate the creative and critical thinking processes. In **convergent problem solving**, you use a question or a linear progression of questions to guide the student in discovering one
single answer (Mosston & Ashworth, 1986). There is a right answer and you act as a facilitator in helping or guiding the student to the solution. Convergent problem solving is also known as guided discovery.

In convergent problem solving it is important to allow the child time to discover the answer. To facilitate this process, you may need to give "guiding hints" such as "what part of the body do we use to contact the ball with while dribbling" or "should our arms look like a helicopter or a pencil when we are trying to balance." The key, however, is to help children discover the answer not answer the question for them. Beginning teachers often struggle with this concept because they are keen to move quickly through the lesson, and feel awkward by moments when the children are struggling. The following sequence provides an example of the use of convergent problem solving in guiding children to discover the "cue" for balancing:

1. "I want everyone to balance on one foot with your arms to your side like a pencil and see how far you can lean forward without losing your balance."
2. "Now, I want you to balance on one foot with your arms out forming a V on each side of the body. Your hands probably fall around your thigh. Again, see how far you can lean forward without losing your balance."
3. "This time I want you to balance on one foot with your arms extended out to your side like helicopter blades. See how far you can lean forward without losing your balance."
4. "Of the three ways you were asked to hold your arms, which one allowed you to lean farthest the most?"
5. "Right, the helicopter blades."

Divergent Problem Solving

In open-ended or divergent questions there are multiple correct answers. Divergent problem solving allows children to independently generate their own “correct” responses (Mosston & Ashworth, 1986). Divergent problem solving thereby allows children the freedom to explore movement and experience new and creative solutions to movement challenges, and to use higher order thinking skill.

Thus, the exploration of movement challenges stated in such a way that there are multiple answers is key to fostering critical thinking skills and having children think at a higher level of understanding. Below are some examples of divergent problem solving tasks or questions:

- Show me all the different ways you can balance on two body parts (see Figure 5-3).
- What are some of the different ways you can dribble the ball around your body while remaining in self-space?
- In your group, create a balancing routine on the beam that has a mount, traveling sequence, and a dismount.
- What are some of the legal body parts you can use to volley a ball in volleyball?
• Show me another way to protect your ball from an opponent while dribbling.

Figure 5-3. Example of One Possible Solution

Checking for Understanding

Think of a situation where you have completed giving student’s instructions for the task you want them to perform and finishes with the question “Does everybody understand?” This is a typical question that teachers often pose to see if students understand what they are supposed to do. The teacher then waits for children to respond and when there are no responses instructs the children to begin the task.

Checking for understanding is an instructional strategy that is used to see how well students comprehend instructional content (Graham, 2001). Teachers sometimes use a quick scan of the class to determine if students understand. They rely on facial expressions, attentive looks, affirmative gestures, or appropriate movement responses to assess understanding. Sometimes, however, these mannerisms do not match what students are actually doing or thinking. In fact, some students while looking extremely interested in what you are saying are actually day dreaming about their next soccer game or how to play the new Nintendo game. Siedentop and Tannehill (2000) suggest that it is a good practice to check to ensure the information given by the teacher was accurately received by the children. We encourage you to use a variety of questioning techniques and demonstrations to ensure that when checking for understanding they are receiving an accurate picture of student understanding.
Strategies for Checking for Understanding

There are a number of strategies that you can use to check for understanding such as the familiar verbal questions that requires a hand up response, but can also include: performance checks, choral responding and recognition checks.

- **Performance Check**
 When using student demonstrations you ask the students to physically demonstrate the content in unison. The key is to have the students perform the task for a quick assessment of understanding. For example, you may ask students to demonstrate a balanced position or the body position for protecting a ball from a defender while dribbling. We encourage you to develop a cue word/s (e.g., “show me”) or another signal that alerts children to demonstrate the skill instantaneously. Although this does not assure an accurate assessment of student understanding, it does increase the likelihood that students will think through the task and then attempt to respond accordingly.

Another possible way to check for understanding using a performance check is for you to ask for student volunteers to show them what was learned that day. Many students when given the opportunity in a warm and inviting environment will volunteer to demonstrate what the teacher has asked. For example, you might say, “Would someone show me what the leg position looks like for volleying a ball on the thigh?” or “In a second, I'm going to be looking for a volunteer to demonstrate a tripod balance.”

- **Choral Responding**
 Choral responding (Siedentop & Tannehill, 2000) and recognition checks (Graham, 2001) can be used to assess student understanding. Students might respond orally or through a physical gesture. Choral responding encourages children to respond verbally to a prompted question. You might say to the children, “I want you to respond by saying ‘yes’ if this is a symmetrical balance position or ‘no’ if it is an asymmetrical balanced position.” You then do a quick check to see how many students responded. One drawback with the use of choral responding is there is an uncertainty with knowing which children actually responded. Thus, a loud response may not be truly indicative of how many students know the answer.

- **Recognition Checks**
 A recognition check uses physical gestures such as a thumbs-up or thumbs-down to assess the level of understanding. For example, you might say “give me a thumbs-up if
this is the correct way to extend you arms to volley a ball and a thumbs-down if it is incorrect.” After the demonstration you wait for the hand signals to see if students recognize the difference in performance technique. Another example of using recognition checks if for you to ask students to point to an area, a boundary, or a piece of equipment when prompted by a cue word or question:

- “Point to the picture on the wall that shows a person whose center of gravity is below the base of support.”
- “When I say, ‘hand’ place your finger pads on the ball in front of you.”

We believe that using these quick ways to assess student understanding will facilitate the learning process. Checking for understanding should be an effortless process and slowed only when you notice a lack of student understanding. Thus, using this nonintrusive method for checking for understanding allows you to make ongoing assessments of student comprehension and lesson effectiveness. The key to effective use of checking for understanding is to utilize strategies that help depict a more accurate reflection of what all students know and not just one or two. We encourage you not to use questions like “Who can tell me what we worked on today?” or “What is one thing I can do to be a better dribbler?” when checking for understanding at the end of the lesson because these questions only encourage a response from one student, thus, failing to provide you with a true measurement of what most students learned from the lesson.

Why Some Children Never Offer to Respond

There are several reasons why students often do not respond to questions teachers ask that are geared toward checking for understanding that include: fear of embarrassment, lack of understanding of the directions, or plain disinterest in the material. We believe that unbeknownst to some teachers, they foster an atmosphere where children fear reproach from the teacher or other children when asking questions. Therefore, children incorporate other strategies to have their questions answered which include silent observation, quietly asking classmates for clarification, or engaging in “competent bystander” (Tousignant & Siedentop, 1983) behavior (i.e., someone who appears engaged in the lesson but is able to avoid participatory behavior). One example of a teacher practice that negatively influences a child’s desire to ask questions is when they use the statement “there is no such thing as a stupid question,” in attempting to encourage children to ask questions. The underlying meaning that the child might take away from this statement could be that to ask a question might make them look dumb. So to avoid this problem, you should use performance checks, choral responding, and recognition checks to help alleviate fear and concern on the part of the student when responding to your attempts to check for understanding.
Monitoring Student Work

Picture a class of thirty or forty second-graders practicing their dribbling skills in a limited amount of space or a large outdoor space. This is not an unusual occurrence for many physical education teachers. They are expected to monitor student performance to ensure that students stay on task or are practicing the skills correctly.

Class movement

We believe that teachers who move about the gymnasium are better able to enhance student learning through their observations. When you are stationary, your observations are typically focused on the whole class and not individuals. Thus, instructional decisions such as changing tasks and providing feedback are given to the entire class regardless of individual student needs.

By walking and scanning, you are able to make individual observations to aid student learning. The key to effective observation is to make quick judgments about student performance and provide effective cues or information to remedy the error. Unfortunately with large class sizes or large instructional areas, you cannot afford to spend an inordinate amount of time with individual students. Thus, you have to develop a system that allows them to check, assess, and remedy student performance quickly. We believe that constant movement and a keen observational eye fosters your ability to make appropriate instructional decisions such as providing specific feedback or changing a task for students.

Feedback

Providing students with feedback is an important instructional strategy. It is believed that learning is enhanced when appropriate feedback is given to students. Feedback is used to focus the student’s attention on critical aspects of the skill and to motivate students to keep practicing. This is especially important in physical education where students often see the result of their skill performance (i.e., landing behind or in front of the jumping line) but do not see how they performed the skill (i.e., forgot to bend knees). It then becomes your responsibility to help the student “see” how they can get better during practice.

As we suggested in chapter 1, feedback is believed to be, by many physical education teachers, critical to enhancing student performance. The belief is that students need to know what they are doing incorrectly in order to correct subsequent practice attempts. In most instances, in order for you to determine an error in skill technique, it is necessary to watch the student perform the skill multiple times. Of course there are different types of feedback you can give to students. See Table 5.-4 for a description of the various types of feedback.
Table 5-4. Feedback Examples

<table>
<thead>
<tr>
<th>Types of Feedback</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
</table>
| General | Information given that does not provide children with information on how to improve. | “Good job”
| | | “Nice balance”
| | | “Looks good” |
| Specific | Information provided to children that identifies error in skill technique (i.e., does not have to relate to cue or objective of lesson). | “Be sure to bend your knees”
| | | “This time make sure you keep your arms level as you try to volley the ball” |
| Congruent | Information provided that is related to the cue or objective for the lesson. | “Remember, to reach your arms back”
| | | “Our focus today is arms extended while balancing. Next time try to keep your arms straight out to your side”
| | | “Pads, Donny” |
| Incongruent | Information provided that is not related to the cue or objective of the lesson. | “Keep the ball in front of you while you dribble (the cue was fingerpads)”
| | | “Don’t swing at the ball when volleying (the cue was flat surface)” |

Source: Graham (2001).

Unfortunately the problem that many physical education teachers face is that their class sizes are so large that it is difficult to watch a student enough times in order to give appropriate individual feedback. The good news for the classroom teacher is that the class size you will be working with will be much smaller than a typical physical education class. Thus, providing appropriate feedback to the student is possible.

You may be asking yourself, “What type of feedback should be given?” Most physical education teachers would agree that specific congruent feedback is the most tangible since it provides the student with information related to the performance of the skill. It is corrective in nature. It is believed that children use this external information to make adjustments in their next attempts. Children need this information and they often request it. An example of this is seen in a child who is having difficulty volleying a ball with different body parts. She asks you, “What am I doing wrong?” Thus, the student desires information on how to correct performance. Being able to provide the student with helpful information in a positive or neutral manner that aid learning is the essence of feedback.
Individualizing Instruction

Children benefit from working on tasks that are appropriate for their skill level. This usually motivates the student to continue working on mastering a skill even when the teacher is not watching. As you monitor student performance on the learning task sometimes you will notice that the task needs to be changed or adjusted so that students can experience a higher level of success or the children are working at a more appropriate level of difficulty. There are two teaching strategies teachers use that provide opportunities for children to work at their own individual level of ability.

- Teaching by Invitation
 When you allow children a choice of tasks and allows them to decide which task best suits their needs, you are using the instructional strategy of Teaching by Invitation. The following are some examples of how you would present the task using teaching by invitation:

 - While working on traveling across the balance beam, you may choose to work on the low beam or the high beam.
 - Choose a ball from the basket (i.e., volleyball, playground ball, foam ball) that you and your partner feel comfortable working with and to area and start passing back and forth.
 - As you travel while you dribble, choose a speed at which you can go at that allows you to maintain control of the ball.
 - Today, as we practice volleying you may work alone or with a partner.

This strategy allows students to adjust or modify the difficulty level of the task for themselves. There are two important points to remember when using this strategy: make all options equally appealing and be patient when some students seem to make poor decisions about task difficulty. Our experience suggests that children will eventually make a wiser decision after a short period of time. If you notice that a student continues to work at a task that is not suitable for them, you may then use the teaching strategy of intratask variation.

- Intratask Variation
 When you decide to modify or change a task for a student or group of students, you are using the instructional strategy of Intratask Variation. In this strategy, the teacher is the decision maker not the student. Often, as you monitor the students while they are practicing the task given, you will notice that the student having difficulty with the task because it is too hard or that the task is simply too easy for the student. You need to address and change the task accordingly before the student becomes frustrated or bored. Thus, this strategy is critical during the lesson development in ensuring the individual student needs are being met.
Final Comments

Although there are various ways to present a lesson, incorporating and using the strategies discussed in the chapter will enhance student learning. Teachers must use these strategies to make the lesson more relevant, meaningful, and appropriate for all children.
Over to you.....

1. You want to help a child learn to walk across a balance beam. You want to provide the child with a picture of what it would look like. What are some of the elements of providing children with a demonstration you need to remember?

2. A parent comes to you concerned about how his child will do in physical education because his child is not as “athletic” as the other children. What do you tell him to alleviate his concern? (Hint: Monitoring student work)

3. Teachers use instructional strategies to present dynamic lessons to students. Explain the importance of each strategy (i.e., nine) and how it could impact student need or interest.

Portfolio Tasks

1. Develop a sequence of questions (convergent problem solving) that could be used to help children “discover” the answer to a movement problem that involves volleying or dribbling with the hand.

2. Write a set induction for introducing the skill of dribbling with the hand that does not involve a sport context or person (i.e., stay away from statements or questions such as “Who can tell me who Michael Jordan is?”

3. Make a video clip of yourself using one of the instructional strategies while teaching a lesson to your peers while the lab for this class or a group of children in a school physical education context.

4. Write three multiple-choice test questions that reflect the content of this chapter on instructional strategies.
Glossary

Convergent problem solving. A type of inquiry that uses a linear progression of questions that guide the student in discovering one single answer.

Divergent problem solving. A type of inquiry where the teacher presents the students with a problem and then challenges to find multiple solutions.

Instant activity. A brief movement task that children will begin on immediate arrival at the work area.

Scaffolding. The process of linking students’ previous knowledge, previous work, or past experience with what will be covered in the present or future.

Set Induction. A method for introducing the focus for the lesson.

Teaching by Invitation. A teaching strategy where the teacher invites the students to change a task when they are ready.

Intratask Variation. A teaching strategy where the teacher changes or adjusts a task for a child or group of children.

References

