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Section 1. Introduction

I1 want to thank the AACTM for inviting me to give the 2001 Lewis-Parker Lecture.
I did not have the pleasure of knowing Dr. Lewis, but this opportunity is especially
meaningful to me because of the impact Dr. Parker had on my professional career. Dr.
Parker created the mathematics program at Auburn University essentially single-handedly
and I have been a beneficiary of his efforts for almost thirty-four years. He was not
Department Head when I went to Auburn in 1967 but he was Dean of the Graduate School
during my first 5 years on the faculty. He and Mrs. Parker came to many departmental
parties during that period and for years after he retired. I was very fond of him.

I enjoyed reading the biographies of both Dr. Lewis and Dr. Parker which were pub-
lished in the Fall 1990 issue of the Alabama Journal of Mathematics when the establishment
of the Lectureship was announced. I especially liked Ann Parker Battle’s statement [1]
about what Dr. Parker said soon after he had established the first Ph. D. program at
Auburn. Concerning his determination not to lower his standards for entrance to Graduate
School, she quoted him as saying “If we let someone enter that is unqualified, someone else
may let him graduate.”

Before beginning my remarks, I will warn you that this Lewis-Parker Lecture will
be somewhat different from previous lectures. Almost without exception they have been
survey articles (similar to [2]) outlining an important area of pure or applied mathemat-
ical research in which the speaker had made numerous original contributions. However,
I thought the AACTM might actually prefer to hear another kind of lecture. Thus, I
will discuss some of the applied mathematical problems I have encountered during my 25
summer appointments (plus 1 sabbatical year) at various applied governmental and in-
dustrial research centers around the US, including Sandia National Laboratory, Bell Labs,
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TRW, the National Security Agency, and the Centers for Communications Research and
Computing Sciences of the Institute for Defense Analyses.

This talk is the current version of a discussion I presented to Pi Mu Epsilon at Auburn
University2 every three years or so over the last twenty years. My purpose in doing this
was twofold. First, I wanted to give undergraduate and master’s level applied mathematics
majors some idea of the kind of work they might end up doing after graduation. The second
purpose was directed toward providing some motivation (and hopefully generating some
enthusiasm) concerning the courses in analysis, probability, statistics, differential equa-
tions, linear and abstract algebra, and other courses required in their applied mathematics
degree programs. The degree requirements in our undergraduate Applied Mathematics
degree plan were rather extensive, bordering on oppressive, in my opinion. During their
first two years, the Applied Mathematics Majors were required to take four quarters of
calculus, courses in linear algebra and ordinary differential equations, plus a programming
course (FORTRAN or C). Then they were required to take year-long courses in each of
(1) Abstract Algebra, (2) Real Analysis, (3) Numerical Analysis, and (4) Probability and
Mathematical Statistics. On top of this, they had to take at least four additional math-
ematics courses (≥ 20 quarter hours). I usually recommended they choose from among
the following: more probability and statistics, partial differential equations, more ordinary
differential equations, vector calculus, complex variables, more linear algebra, and Fourier
analysis . They had to take a Minor consisting of at least five courses (≥ 25 quarter hours)
in some applied discipline. I always recommended they minor in physics because that was
my undergraduate minor, but they seldom followed my recommendation. Many of the
students who were pursuing the possibility of a career in Actuarial Science chose to take
their minor in Business Administration, which was appropriate.

I have to admit that I certainly didn’t undertake such an extensive plan of study for
my own undergraduate degree. I took no abstract or linear algebra courses, although I
learned a good bit of linear algebra in the year-long course in ordinary differential equations
I took after completing the beginning ordinary differential equations course. I took a year-
long course in probability followed by a year-long course in mathematical statistics, as well
as a semester course on these topics taught in the Actuarial Science Department at the
University of Texas.

As I proceed through a discussion of some specific problems I have had the opportunity
to work on during my (primarily) summer appointments during the past 40 years, I will
also describe how the computing capabilities available to me have evolved over the years.

Section 2: Sandia and Bell Laboratories Appointments (1960’s and 70’s)

My first technical appointment came during the summer of 1961 when I was a begin-
ning master’s student. I reported to Sandia National Laboratory in Albuquerque, NM, for
the first of 3 summer appointments in the Quality Assurance Department there. I always
tell the students that I didn’t get this job on the “first try”. I had applied at a number of

2
In recent years, this talk has also been given to student-faculty groups at other universities, e.g. Washing-
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laboratories and aerospace companies the year before without success. I persevered and
hit paydirt on my second annual campaign. In the intervening year, I had taken the year-
long course in mathematical statistics, the probability-statistics course in the Actuarial
Science Department at the University of Texas, and had made a fairly high mark on the
probability-statistics exam administered by the Society of Actuaries. These credentials are
probably what helped me “make the cut” on my second try. When I reported to Sandia,
the security clearances of the summer hires were not completed yet, and they set us all up
with desks in a barracks-like building outside the security perimeter until the clearances
were finished. My supervisors brought me a mathematical statistics book by Hoel [3] and
suggested I start working my way through it in preparation for reporting to the Quality
Assurance Department. I told them that I had just taken a course out of that book and,
indeed, had the book with me3. After ascertaining that I had not covered every section
in the book, they suggested I work through the rest of the book. My security clearance
was finished pretty quickly and I reported to work. I won’t go into detail about specific
problems I worked on during those first three summers. They involved standard statistical
inference techniques (hypothesis testing, construction of confidence intervals, regression
analysis, etc.) we teach in the undergraduate courses in probability and mathematical
statistics. I had to do my own computing of the statistics associated with weapons compo-
nent test data collected in the field. My “computer” was a Monroe desk calculator. Hey,
at least it was electric.

After the third summer in the Sandia Quality Assurance Department, I stayed at the
University of Texas for several summers in order to take certain graduate courses that
were offered only in the summer and to begin work on my Ph. D. dissertation. I took the
measure theory course taught by Prof. R. L. Moore during one of the summers and was
lucky enough to be in the movie [4] the MAA filmed in that class. After my dissertation
was “in progress”, I returned to Sandia for my last summer as a graduate student and
for the summer after receiving my Ph. D. This time I was assigned to the Statistics and
Computing Division, which was one of the Labs’ applied consulting units. This was a
“dream job” for someone like me because of the wide variety of interesting problems that
were brought to the Division by engineers and scientists from divisions all over the Labs.
Most of the staff of my Division were Master’s or Ph. D. statisticians. Many of the problems
assigned to these people involved more theoretical mathematics than they preferred, and
so many of these problems were passed on to me. The computational facilities at Sandia
were much more modern by this time, but I was “insulated” from them. This was in the
days when analysts were not necessarily expected to be able to program a computer and
I had a programmer who was assigned to assist me in transforming any ideas I had about
solving some problem into computational form.

One of the first problems I was assigned was that of finding “parametric tolerance lim-
its” for a “mixed” probability distribution. In undergraduate probability and mathematical
statistics courses, we concentrate on the two main types of distributions, those which we
label as “discrete-type” and those we label as “continuous-type”. Indeed, most modern
texts (including the text by Hogg and Tanis [5] which I used in the probability course I

3
The point I am making to the students here is that they didn’t necessarily expect me to already know how

to do the work I was going to be assigned.
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taught last semester) are constructed so that when you open the book, you see on the
inside front cover a list of the most important discrete distributions and their parameters,
and on the facing page to the right you see a list of the most important continuous-type
distributions and their parameters. Most of these texts have one section devoted to “mixed
distributions”, where the cumulative distribution function (or “c.d.f.”), F (x), is a convex
combination, F (x) = εFd(x) + (1 − ε)Fc(x), (where 0 < ε < 1) of a discrete c.d.f., Fd(x),
and a “continuous-type” (more accurately, absolutely continuous) c.d.f., Fc(x). In under-
graduate mathematical statistics courses, we routinely teach the students how to obtain
what is called an “upper confidence bound” on the mean of an underlying distribution,
given observations, x1, x2, . . . , xn, of a random sample from a normal distribution having
unknown mean, µ, and variance, σ2. A “95% upper confidence limit on µ” is a number
b = g(x1, x2, . . . , xn) for which you can say, “I’m 95% sure that µ ≤ b” (this statement
has a precise technical interpretation). This is a standard statistical technique based on
using the so-called “t-distribution”. Note that µ is the same thing as the “50th percentile”,
π.50, when one is dealing with normal distributions. One example of a “tolerance limit”
would be a similar confidence bound on some other percentile. For example, a 95% upper
tolerance limit on π.90 is a number B = h(x1, x2, . . . , xn) for which you can say, “I’m 95%
sure that π.90 ≤ B”. This procedure is based upon a not-so-standard statistical technique
using the so-called “non-central t-distribution”. The theory was developed by Wald and
Wolfowitz [6] in 1946. The problem posed to me was to find out how you find an upper
95% tolerance limit for a distribution which is a “perturbed” normal, i.e. having a “mixed”
c.d.f. satisfying the formula given above, where ε > 0 is relatively small, Fd is the so-called
“Heaviside” distribution having a jump discontinuity of size 1 at x = 0 and Fc is a normal
c.d.f., Φ[(x−µ)/σ]. I might note that the problem was not described to me in these terms,
but was instead described to me in terms of probability densities, where the discrete part
was assumed to have the so-called “Dirac delta function”, δ(x), as its so-called “density”.

My main reason for even including this problem in my discussion is to provide the
students with some motivation for taking the section on mixed distributions in their text
books seriously and to suggest to the teachers of such mathematical statistics courses that
maybe we should not skip that section. I didn’t provide the customer with a complete
analytic solution to his problem, but I did provide him with a technique that I could prove
was “asymptotically correct” (as n → +∞). I would also mention that in preparing for
this talk, I logged onto the American Mathematical Society’s Mathematical Reviews data
base, MathSciNet, and fed it the phrase “tolerance limit”. It came back with a list of 111
references, including the 1946 Wald-Wolfowitz paper. It is conceivable that someone has
worked out a technique for finding tolerance limits for such mixed distributions which are
exact for every sample size n.

The next problem I am going to describe is one of the most interesting I have come
across in my 40 years of (part-time) applied work. It involves the probability distribution
of what might be called a “random geometric series”. It is described as follows. Suppose
we are given an infinite sequence X0, X1, X2, . . . of independent random variables, each
having a Bernoulli(1

2 ) distribution. In other words, assume we can toss a coin infinitely
many (independent) times and if on the ith toss, we get a head, then Xi = 1, otherwise
Xi = 0, so that P (Xi = 1) = P (Xi = 0) = 1

2 for each i. We are also given a number

4



Alabama Journal of Mathematics Fall 2001

0 < r < 1 and the random variable, Yr is defined to be Yr = X0 + rX1 + r2X2 + . . . .
It is clear that the range of the random variable Yr is a subset of [0, 1

1−r
], and that in

the case where all of the Xi = 1, Yr = 1
1−r . Of course, this event has probability zero

in the random case. What is actually going on is that there is a secret sequence of zeros
and ones. Another person is trying to guess the terms of the sequence and every time
he is correct, that Xi = 1 for him and he is building up his version of Yr. I know
what the secret sequence is and I can force all of the Xi’s to equal 1 so that my version
of Yr = 1

1−r . The electrical engineer who brought the problem to us had designed an
electronic gadget that essentially contained a component that behaved like Yr and he
wanted us to provide him with a computer tabulation of the c.d.f., Fr, for Yr. He had
already modelled the distribution with it’s normal approximation and some presumably
more accurate approximations, which he started to tell me about. I asked him not to
tell me any more so that I would not be influenced by knowledge of his approach as I
tried to figure out how I would approach the problem myself. It is fairly easy to figure
out what the mean and variance have to be and that when r = 1

2 , Yr has the continuous
uniform distribution on the interval [0,2]. Shortly after figuring that out, I was able to
see that when r < 1

2 , Fr is a continuous singular distribution, indeed that when r = 1
3 ,

Fr is the Cantor distribution!!! I cannot tell you how excited I was when I figured
this out. You see, when we teach the undergraduate probability-mathematical-statistics
sequence, we tell the students about discrete distributions, distributions of continuous type
(i.e. absolutely continuous distributions), and sometimes, about distributions which are
mixtures of these two types. We don’t tell them at that level about the third type of
probability distribution, the continuous singular type. I rushed to my boss’s office to tell
him about this. After I told him what I had found, he said “I know you mathematicians,
you just don’t like the Dirac delta function”. I replied that while he was correct that I
don’t like the Dirac delta function, this distribution didn’t involve that because its c.d.f.,
F , was actually continuous but its derivative, F ′, was equal to zero almost everywhere, so
that

∫ ∞
−∞ F ′(t)dt = 0. To this he replied, “There is no such thing as that”. Let me point

out at this stage that my boss was a Ph. D. statistician, this was the second summer I had
worked for him, and we had become (and still are) very good friends. Anyway, I started
going into detail about what continuous singular distributions were like and described the
Cantor distribution in detail. For the x’s in the middle third interval, [13 , 2

3 ] that is removed
at the beginning of the construction of the Cantor set, you set F (x) = 1

2 . You then connect
with straight lines between (0,0) and ( 1

3 , 1
2) and again between ( 2

3 , 1
2 ) and (1,1), and you

have the first approximation to the Cantor function. Then, you modify this construction
by making F (x) for the x’s in the next two “take-out” segments in the construction of the
Cantor set be equal to 1

4 and 3
4 , respectively, connect the gaps so as to create a polygonal

function and you have the second approximation to the Cantor function. Continuing this
process yields a sequence of continuous c.d.f.’s which converge uniformly to the continuous
Cantor distribution. We then computed the sum of the lengths of the “take-out” segments
and saw that it equaled 1, so that the Cantor distribution is singular. At the end of this
discussion, my boss said “But there can’t be such a thing.” I said, “Wait a minute, I was
watching you nod your head affirmatively all the time we were going though this. How
can you still say there can’t be such a thing?” He said “Because if there were such a thing,
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I would have known about it!” That stumped me for a while. Then I told him that I
would bet that he did know about continuous singular distributions but that he had just
forgotten about them because this was the first time he had come across one in a practical
situation. I asked him what text he had used in the most advanced theoretical probability
course he had taken in his graduate program. It was the classic, “Feller, Volume II” [7],
which he actually had on the shelf in his office. I asked him to get it down and look in the
Index under “Cantor” and that directed us to the page where Feller started discussing the
continuous singular case. Indeed, there was a discussion of the fact that the Y 1

3
described

above has the Cantor distribution (with the scale on the axis changed so that the c.d.f.
achieves value 1 at y = 1.5 rather than y = 1). I have to say that that hour-long discussion
with my boss at Sandia was one of the most enjoyable hours of my professional career.

I should point out that I don’t talk about continuous singular distributions when I
teach undergraduate probability-mathematical-statistics courses, but I do talk about the
Cantor function when I teach the undergraduate course in analysis. Of course, the engineer
who brought us the problem didn’t know (or care) anything about singular distributions
or the Cantor function, he just wanted to know what the numbers were. In particular, he
wanted to know what some of the percentiles were at the extreme right tail of the c.d.f.
Fr for some r’s close to 1. My solution for the engineer was obtained as follows. First, I
showed that Fr satisfies the functional equation

Fr[t] =
1
2
Fr[t/r] +

1
2
Fr[(t − 1)/r] .

Then, I saw that if r =
(

1
2

)1/n for some positive integer n, Fr has closed form

Fr(t) = tn / [n!2(n+1)/2] for 0 ≤ t ≤ 1/r .

Fr has symmetry about the median, 1
2(1−r) , so finding an early percentile, say π.001, will

determine the late one, say π.999, for example. The closed form expression gets you started,
and then you can use the functional equation to extend computationally. With my pro-
grammer’s help, I was able to provide the engineer with the kind of information he needed,
using the exact distribution, Fr, rather than some kind of approximating distribution.

After leaving Sandia that summer to report to my new job on the faculty of Auburn
University, I investigated a very interesting open problem concerning the nature of the
c.d.f., Fr. The problem was to distinguish between cases where the distribution is abso-
lutely continuous and cases where it is continuous-singular, in particular, to characterize
the 1

2 < r < 1 for which Fr is singular. It seemed at first like Fr should be absolutely
continuous for all 1

2 < r < 1, but that turned out not to be the case. It is a well-known the-
orem of Lebesgue (see [7]) that every c.d.f. is a convex combination, F = αFd+βFc+γFs,
of a discrete c.d.f. Fd, an absolutely continuous c.d.f. Fc, and a continuous singular c.d.f.
Fs, where α ≥ 0, β ≥ 0, γ ≥ 0, and α + β + γ = 1. It follows from a theorem of Jessen
and Wintner [8] that the c.d.f. Fr is either purely absolutely continuous (i.e. β = 1) or
else purely continuous singular (i.e. γ = 1). Erdös showed in 1939 [9] that Fr is singular
if r = 1/λ , where λ is a “PV-number”. In particular, Fr is singular for r = “the golden
ratio”,

√
5−1
2 , which is a root of the polynomial equation, x2 + x − 1 = 0. Erdös showed
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in 1940 [10] that Fr is absolutely continuous for almost every r ∈ [t, 1] for some 1
2 < t < 1

and conjectured that the same was true for t = 1
2
. Garsia conjectured in 1962 [11] that Fr

is singular only when r is algebraic and satisfies a polynomial equation with all coefficients
equal to ±1 or 0. Solomyak showed in 1995 [12] that Fr is absolutely continuous for almost
every r ∈ [12 , 1], thus confirming Erdös’s 1940 conjecture. The problem of characterizing
the r for which Fr is singular is still open (despite the fact that I tried to solve it).

During my first six years at Auburn we could count on full-time teaching during the
summer, so I did not seek summer employment in industry. But that changed in 1973,
when we started getting half-time teaching during the summer. The change didn’t affect
me that year because I was on sabbatical at the University of California Irvine studying
probability under the direction of Professor Howard Tucker and I had already planned to
stay at UCI through the summer. However, I decided it was time to return to my “applied
career” after that. My best friend at Auburn University, Coke Reed, was going to the IDA
Communications Research Division in Princeton for the summer of 1974, so I decided to
apply to go to Bell Labs that summer because it is also in New Jersey. I felt there was
a chance I could get on there because there was a connection between Sandia Labs and
Bell Labs in that Bell used to manage Sandia Labs. I was successful in arranging an ap-
pointment for the summer. The work there involved performing nonparametric statistical
analysis of a very large set of data concerning customer calling characteristics in Califor-
nia. The problem was fairly interesting and I had to learn quite a bit of nonparametric
statistics that came in handy in later years. I actually took another sabbatical to UCI
a few years later during which I had the opportunity to participate in a nonparametric
statistics seminar led by Professor Madan Puri (one of the world’s experts), who was also
on sabbatical there. It is too bad I didn’t have this seminar experience before I went to
Bell Labs because I would have been able to accomplish more while I was there. I knew
before I went to Bell Labs that I would be expected to do my own programming and I was
prepared to do that. We did our numerical work on an IBM 360, but that was during the
days when programs were stamped into punch cards and the card stacks were submitted at
the computer center window to be run as batch jobs. There was always some turn-around
time before you got the results back and found out there were bugs in your program and
you had to find and correct the bugs and then resubmit. There were usually several cycles
like this until the program would finally run. It seems primitive by today’s standards but
it was standard operating procedure in those times. This was not my favorite summer
appointment but it was not because of the work I was doing. The problem was that Bell
Labs Holmdel is in one of the most beautiful areas on the entire eastern seaboard, and
as a result, only very rich people are actually able to live there. Consequently, I (and all
the other summer hires) had to live in some apartment complex almost 20 miles from the
Lab and faced an hour round trip drive every day. This is normal for people who live in
metropolitan areas but not for someone who had been living in a small town in eastern
Alabama for seven years. Actually, the best thing I can say about that summer is that I
was in a car-pool with three single college girls.

A couple of years later, I decided to try to go back to Sandia Labs partly because
my friend Coke Reed had arranged a summer job for himself at Los Alamos Labs. Sandia
was originally sort of a “sister lab” to Los Alamos. The physics of nuclear weaponry
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was developed at Los Alamos and the engineering was done at Sandia. Sandia is now
more of a Department of Energy lab. In any case, I was fortunate to be able to arrange
an appointment in the Sandia Labs Fuel Cycle Risk Analysis Division that lasted two
summers. By this date the computing setup at Sandia was more modern. They had a
CDC 6600 which I could access interactively using a fairly fast TI terminal which had
some kind of heat sensitive paper that fed through it. I was able to use line editing of
programs I was writing, submit a compile command, get diagnostics back immediately,
and correct errors in the program on-line. Of course, it wasn’t a CRT connection that
allows page editing like we now have, but it was certainly an improvement over sitting at a
punch-card machine and carrying stacks of punch cards to the Computer Center window.
I was involved in a Nuclear Regulatory Commission project to study the surface flow
of radioactive waste under the assumption that radionuclides started leaking from their
underground storage site after a thousand years or so. The surface flow was assumed to
be a large compartmental model (called the “Environmental Transport Model”) described
by a linear vector differential equation,

(1) X ′(t) = A X(t) + R .

Each component, Xi(t), of the vector function, X(t), represents the amount of some par-
ticular radioactive isotope we are tracking which is present in some subcompartment (in
the stream flow, in the subsurface aquifer, in the soil adjacent to the stream, captured in
the sediment in the bottom of the stream) of one of the compartments (a uniform stretch
of the river, a lake, etc.) in the model. The A in equation (1) is the matrix that represents
the flow rates between compartments and the R in the equation is the vector of input rates
as the leaking radionuclides begin to reach compartments in the environmental model. As
radioactive isotopes decay, they may change into other isotopes which are being tracked
and this is considered to be a transfer to a new compartment. The flow rate for this kind
of transfer would be constant, of course, but the flow rates between actual environmental
compartments depend upon the weather, are seasonally periodic at best, and are more
accurately modelled by stochastic functions. These two more complicated cases would be
modelled by the following two equations,

(2) X ′(t) = A(t) X(t) + R ,

(3) X ′(t, ω) = A(t, ω) X(t, ω) + R .

The matrix A(t) of equation (2) would represent the assumed seasonally periodic flow
rates between compartments and the matrix A(t, ω) of equation (3) would represent the
stochastic flow rates that would be driving the flows, and the solution to the problem would
be the stochastic process X(t, ω) that is the solution to the stochastic differential equation
(3). The constant matrix, A, which drives the flow in equation (1) can be thought of as
the average of the flow-rate matrices in the more accurate equations (2) and (3), i.e.

A =
∫ 1

0

A(t)dt =
∫ 1

0

E[A(t, ω)]dt .
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The problem I was assigned was to investigate the question of how large the errors were
in assuming model (1) rather than the more accurate models (2) and (3). I obtained some
analytical results concerning bounds on the differences between solutions to models (1) and
(2) and some empirical results based upon a large Monte Carlo simulation run concerning
the differences between the solutions to models (1) and (3).

One unexpected benefit that came out of these two summer appointments in the Fuel
Cycle Risk Analysis Division was that I actually got some “outside publications” on this
project. This did not happen in very many of my summer appointments because almost
every project I worked on was classified, or else the results I obtained were considered
“proprietary” and I was unable to attempt to publish them. Of these outside publications
[13]-[16], the first two would not have counted for much as far as promotion and tenure at
Auburn are concerned because they look too much like “technical reports”. However, these
were different from the many other technical reports I wrote over the years in that they
were NUREG Reports of the Nuclear Regulatory Commission and were publicized and
available to researchers in the field all over the world. These days it is easy for researchers
to log onto the laboratory web sites and download such NUREG reports. The publication
[15] might have carried a little more weight at Auburn because the Auburn University
Library at least has volumes of the serial, Scientific Basis for Nuclear Waste Management,
on the shelves. However, the Auburn University Promotion and Tenure Committee would
probably have dismissed this as a “non-refereed” publication. But the publication [16]
would have been accepted by the Promotion and Tenure Committee because the journal,
Ecological Modelling, is a well-respected refereed scientific journal. However, that journal
probably would not have been considered to be a mathematics journal by the faculty in
the Department of Mathematics. Thankfully, none of this mattered because I was already
a tenured Full Professor at that time. One of my co-authors on those papers was Jon
Helton, who was a “migrant worker” like me, making his home base at Arizona State
University. Helton graduated from the University of Texas under the same supervising
professor (H. S. Wall) I studied under. He is younger than I am and I did not know him
at Texas, but I took Freshman trigonometry under his father (who was the “Mr. H.”
mentioned in the Moore movie [4]). My other co-author, Ron Iman, was a permanent
staff member in the Statistics and Computing Division at Sandia, where I had worked
during my previous appointment at Sandia. Iman recently served a term as President of
the American Statistical Association.

Section 3: Defense-Aerospace Appointments (early 1980’s)

A summer or two later, I decided to try to go back to Bell Labs for a summer, partly
because my friend, Coke Reed, was going back to IDA/CRD in Princeton. I applied and
was contacted by a technical group that wanted to hire me. I should explain that when the
technical people have decided they would like for you to work for them, the appointment is
still not guaranteed. The Personnel Office has to do a lot of paperwork, the Business and
Finance Office has to do a lot of paperwork, and at installations where a security clearance
is required, the Security Office has to arrange for the clearance (this is often the biggest
hold up). Things dragged on for another month or so with no firm offer. I got a call out
of the blue from a friend I knew in graduate school asking me if I would like to come work
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with his group at a defense aerospace consulting company called the Center For Analysis
(CFA), in Newport Beach, California. I promise that I did not initiate this alternative job
possibility - I have never applied for two different jobs for a summer because I know how
much trouble it is for someone to set up a job for a summer hire. However, it was getting
to be late April and I had a growing family at that time, so I decided to take the job in
Newport Beach. The fact that I was going to have a view of the Pacific Ocean out the
window in my office and was going to earn the highest salary I had ever earned surely had
nothing to do with it. I called the technical group at Bell Labs and told them that because
of the delay in finalizing the Bell Labs appointment, I felt I had to accept the unsolicited
offer I had received from a company in Southern California. The people in the technical
group at Bell Labs were furious, not at me but at the Personnel and Finance Offices that
had been dragging their feet on my appointment. So I packed up my family and headed
west.

I worked at the Center For Analysis for three summers and then worked at TRW
Strategic Systems Group for another summer when several of my CFA colleagues moved
to TRW as project managers. The computing facilities at both of these locations were
modern. At both locations, I finally had access to CRT terminals from which you could
do interactive page-editing of programs, compile programs on the main computer, and
receive diagnostics immediately. So it was possible to produce bug-free code fairly quickly
and then to obtain quality computational results with the ease we have come to expect
today. The problems I worked on at both installations were similar, involving determining
the reliability of infrared discrimination techniques and improving performance, if possible.
One of the problems was the following. An “incoming” missile is dropping off objects as it
streaks across the sky and we are to train a telescope with an infrared sensor attached to
it on these falling objects. Then we will have a computer analyze certain features of the
optical signature that is being observed and make a decision as to whether the particular
object we are looking at is a Warhead or a Decoy. We will know that the observations
x1, x2, . . . , xn are of a random vector which has one of two known multivariate normal
distributions N(Mw, Σw) or N(Md, Σd), where the M ’s and Σ’s are the known mean
vectors and covariance matrices for the two distributions. What was done was essentially
what we teach the students to do in undergraduate mathematical statistics courses, test
the hypotheses

H0 : the underlying distribution is N(Md, Σd)
vs

H1 : the underlying distribution is N(Mw, Σw) .

The only difference between this problem and the hypothesis testing we teach at the
undergraduate level is that the distributions are multivariate. We still had to consider the
possibility of making errors:

Type I Error: reject H0 when H0 is true.
and

Type II Error: accept H0 when H1 is true.
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The Type I Error was called “False Alarm”. The Type II Error was called “Leakage”, and
you really hate it when it happens! My problem was to determine what variables
were best to use to keep both errors small and then write a program so the computer
can automatically make decisions very quickly (in “real time”). I was able to make some
improvements in the choice of features they had previously been extracting from the optical
signature that decreased both error types. I also was able to improve the efficiency of the
program they had been using so that the time to decision was decreased.

I would have returned to TRW for another appointment after that fourth summer in
Southern California, but I took on the job of Head of the Auburn University Department
of Mathematics. My colleagues at TRW arranged for the USAF Ballistic Missiles Office to
keep me involved through a contract with Auburn University so that I could continue my
work at Auburn the following summer. But of course, being Department Head, I didn’t
really have time to do the job justice.

Section 4: U. S. Governmental Cryptologic Work (mid-1980’s to present)

Since the mid-1980’s, I have done my applied work at three locations, the Center for
Communications Research of the Institute for Defense Analyses (IDA/CCR) (7 summers),
the IDA Center for Computing Sciences (1 summer), and the National Security Agency (1
year, 5 summers, consulting). This section of this paper will be somewhat short because
most of the work I did at these places was highly classified and I cannot talk about it.
There are publications that give some information about the nature of the work, the oldest
and most extensive being the well-known book, The Code Breakers [17], by David Kahn
(“CCR” is called “CRD” in this book). Another source is the article, “The Agency That
Came in From the Cold”, which appeared in the 1992 A.M.S. Notices [18]. It is a text of a
lecture that Dr. Richard Shaker (who was Chief of Mathematical Research at NSA) gave
at the national AMS/MAA meeting, held in Baltimore in 1992. I was at that lecture, and it
marked a significant change in NSA policy concerning secrecy of its activities. Before that
time, I would not have even been able to say that I worked at NSA. When I spent the 1993-
94 academic year at NSA under the auspices of the NSA Mathematical Sabbatical Program
(see [19] or log onto http://www.nsa.gov/programs/msp/sabbat.html for information
about that program), I was invited to give a version of this talk at Washington and Lee
University. I had never referred to NSA in earlier versions of this talk, so I went to
Dr. Shaker’s office and asked him if I could say anything. He said I could say anything
that had been published in the open literature. In particular, I could quote freely from his
article. A more recent source of information is a documentary film which was shown on the
History Channel’s “History’s Mysteries” Series in January of 2001. An article about that
documentary which appeared in my local newspaper at the time quoted the NSA Director,
Lt. Gen. Michael V. Hayden, as saying “We intercept communications of adversaries of
the United States and attempt to turn that into wisdom for American policy-makers and
commanders. By the same token we attempt to prevent other nations from doing that to
the United States of America”.

It probably comes as no surprise to anyone that the computing facilities at IDA/CCR,
IDA/CCS, and (especially) NSA are without equal. I had a SPARC workstation on my
desk at NSA from which I could connect to more powerful computers when I needed them.
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I don’t know how many CRAY computers I had access to - I wouldn’t be able to tell
you, even if I did know, but I had accounts on three different types of CRAYs because
of the nature of the project I was working on at the time. It is well-known that NSA is
the cryptologic arm of the US Department of Defense. The work is highly classified and I
cannot say anything specific about it. What I can say is that the single most personally
satisfying professional experience I have had in my entire career (pure or applied) occurred
while I was working on that classified project at NSA in 1993-94.

Occasionally, an unclassified problem comes up which is of interest to NSA and I did
spend two summers working part time on such a problem. It concerned “factor conver-
gence” and “order independence” in a numerical algorithm used to “balance” nonnegative
matrices. The algorithm was used by the famous statistician Deming, et. al. in 1940 [20],
who raised the question of convergence of the algorithm. Statisticians call the algorithm
“iterative proportional fitting”. An engineer named D. T. Brown [21] gave an incorrect
argument for the convergence in 1959. Engineers and information theorists sometimes call
the algorithm “Brown’s algorithm”. The mathematician, R. Sinkhorn, gave an incorrect
proof of convergence in 1964 [22] and then Sinkhorn and Knopp [23] gave a correct proof
in 1967. They were actually preceded in doing this by an Economist named Bacharach
[24] who also gave a correct proof of convergence in 1965, but not many researchers knew
about this paper because it was not reviewed by the AMS Reviews. The algorithm is
called “Sinkhorn Balancing” or “Iterative Scaling” in the Linear Algebra community. The
work that two of my NSA colleagues and I did was published [25] - this time in a refereed
mathematics journal!

Section 5: The “Bottom Line” - Keep the Employers Happy

I save the next problem for last because it provides a special lesson for students. It
was a problem I solved during my appointment in the Statistics and Computing Division
at Sandia Labs in the late 1960’s. It was definitely not the hardest nor the most interesting
problem I worked on there, but it is probably what I am remembered for at Sandia. It
is a problem of determining the minimum sample size that needs to be tested in order to
make a predetermined confidence statement about the reliability of the items in a finite
population, under the assumption that no defective items are found in the sample. We
actually teach the students in undergraduate mathematical statistics courses how to do this
using normal approximations to the Binomial distribution. However, it is possible to do
this exactly without using the normal approximation and I usually teach students how to
do this. For example, it can be determined that if we test a random sample of size n = 45
from a Bernoulli(p) distribution, where p = P (defective), q = 1 − p = P (functional), and
we observe zero defectives in the sample, then we can say “We are 90% sure the population
is 95% functional”, which is equivalent to saying that we have determined that .95 is a 90%
lower confidence bound on the true proportion, q, of functional items in the population
being tested. The Reliability and Quality Assurance Departments at Sandia Labs were
making these sample size selections constantly because they were required by Department
of Defense regulations to do sampling and run tests on a multitude of weapons systems
and components of those systems on a periodic basis in order to verify readiness. They
did this so often that one of the applied mathematics divisions at Sandia designed and
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produced a “slide-rule” that could be used to quickly determine the choice of sample size
that would yield the desired percentage confidence in the desired percentage functionality
in the case that zero defectives were observed in the sample being tested (which was almost
always the case). However, these choices are based upon the assumption that the items
tested are chosen independently from the populations so that the binomial distribution
applies. That is not the true situation. The “population” is a finite set of N systems
or components in storage somewhere and some number, K (hopefully zero), of them are
defective. When the testing is done, we would choose the items to be tested randomly, but
we wouldn’t be so foolish as to test the same item twice. It is really the hypergeometric
distribution which should be used in determining the sample size to be tested rather than
the binomial distribution. I thought that this should surely yield some advantages. After
carefully studying exactly what a lower confidence bound on the number of functional items
actually is, I determined that there would be great advantage in using the hypergeometric
distribution. For example, if the finite population is of size N = 80, K of which are
defective, and we test a sample of size n = 35 and observe zero defectives in the sample,
we can correctly say that “We are ≥90% sure the population is ≥95% functional”. You
might ask, “What’s the big deal about a sample size of n = 35 versus a sample size of
n = 45”? They were running these tests on multiple systems and systems components each
year. It cost thousands of dollars to run some of these tests, so the smaller the sample
size required to achieve ≥ 90% confidence in functionality ≥ 95%, the less money the tests
cost. And they were paying me less than $5,000 for the whole summer.

This is the kind of thing that will get you in good with your employers. It probably
contributed to the fact that I was able to go back to Sandia quite a few summers. I always
advise students to try to pull off something like this early in their assignment and then
they can “coast” for a while. I’m just kidding about this, they should never “coast” in a
job – the job would get pretty boring, for one thing. Besides, it is a fact that, even though
your employers do appreciate it when you do something good, sooner or later they are
going to ask, “What have you done for us lately?”!
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