1.1 Four Ways to Represent a Function

A function, call it f, is a rule that assigns to each element x in a set D exactly one element, called $f(x)$, in a set E.

i.e.

$$
\begin{aligned}
& f(a)=f(b)=x \\
& f(c)=f(d)=z
\end{aligned}
$$

- For this course, we always consider that the sets A and B are the subsets of real numbers i.e. $A \subseteq \mathbb{R}$ and $B \subseteq \mathbb{R}$.
- The symbol $f(x)$ is read " f of x " or " f at x " and is called the value of f at x, or the image of x under f.

The set A is called the domain of the function. The range of f is the set of all possible values of $f(x)$ as x varies throughout the domain, that is the

$$
\text { range of } f=\{f(x) \mid x \in D\}
$$

There are four possible ways to represent a function

- Verbally: By Description in words
- Visually: By graph
- Numerically: By table of values
- Algebraically: By an explicit formula

Example 1

Let $f(x)=3 x+2$. Evaluate $\frac{f(a+h)-f(a)}{h}, h \neq 0$

Example 2

Evaluate the piecewise defined functions at the indicated values.

$$
f(x)=\left\{\begin{array}{llr}
3 x & \text { if } & x<0 \\
x+1 & \text { if } & 0 \leq x \leq 2 \\
(x-2)^{2} & \text { if } & x>2
\end{array} \quad f(-5), f(0), f(1), f(2), f(5)\right.
$$

The Domain of a Function

The domain of a function may be stated explicitly, for example if we write

$$
f(x)=x^{3}-1, \quad 2 \leq x \leq 15
$$

then the domain of the function is $2 \leq x \leq 15$.
If the function is given by a mathematical formula and the domain is not stated explicitly, then the domain of the function is the set of all real numbers for which the expression is defined as a real number.

Example 3

Find the domain of each function.
(a) $f(x)=\frac{x+2}{x^{2}-1}$
(b) $f(x)=\sqrt{2 x-5}$
(c) $f(x)=\frac{3}{\sqrt{x-4}}$

The graph of a function is a curve in the $x y$-plane. But question arises: Which curves in the $x y$-plane are graphs of functions? This is answered by the following test.

The Vertical Line Test: A curve in the $x y$-plane is the graph of a function of x if and only if no vertical line intersects the curve more than once.

Even and Odd Functions

Let f be a function.

- f is even if $f(-x)=f(x)$ for all x in the domain of f.

The graph of an even function is symmetric with respect to the y-axis.

- f is odd if $f(-x)=-f(x)$ for all x in the domain of f.

The graph of an odd function is symmetric with respect to the origin.
Example 4 Determine whether the function f is even, odd, or neither.
(a) $f(x)=4 x^{4}+2 x^{2}+1$
(b) $f(x)=x^{3}+x$
(c) $f(x)=x^{2}+x-1$

Definition of Increasing and Decreasing Functions

- A function f is increasing on an interval I if $f\left(x_{1}\right)<f\left(x_{2}\right)$ whenever $x_{1}<x_{2}$ in I.
- A function f is decreasing on an interval I if $f\left(x_{1}\right)>f\left(x_{2}\right)$ whenever $x_{1}<x_{2}$ in I.

The definitions mean that the function f is said to be increasing when its graph rises and decreasing when its graph falls.

