1.4 Exponential Functions

The function $f(x)=2^{x}$ is called an exponential function because the variable, x , is the exponent. It should not be confused with the power function $g(x)=x^{2}$, in which the variable is the base.

In general, an exponential function is a function of the form

$$
f(x)=b^{x}
$$

where b is a positive constant.
We call the function

$$
f(x)=e^{x}
$$

the natural exponential f unction, where e denotes the Euler number. An approximation of the number e to five decimal is 2.71828

Note that all of these graphs pass through the same point $(0,1)$ because $b^{0}=1$ for $b \neq 0$. If $0<b<1$, the exponential function decreases; if $b=1$, it is a constant; and if $b>1$, it increases. These three cases are illustrated in the next Figure .

(a) $y=b^{x}, 0<b<1$

(b) $y=b^{x}, b=1$

(c) $y=b^{x}, b>1$

Observe that if $b \neq 1$, then the exponential function $y=b^{x}$ has domain \mathbb{R} and range $(0,+\infty)$. Notice also that the graph of $y=(1 / b)^{x}$ is just the reflection of the graph of $y=b^{x}$ about the y -axis.

Example 1 Sketch the graph of $y=3-2^{x}$ and determine its domain and range.

Laws of Exponents If a and b are positive numbers and x and y are any real numbers, then

1. $b^{x+y}=b^{x} b^{y}$
2. $b^{x-y}=\frac{b^{x}}{b^{y}}$
3. $\left(b^{x}\right)^{y}=b^{x y}$
4. $(a b)^{x}=a^{x} b^{x}$

Example 2. Use the Law of Exponents to rewrite and simplify the expressions
(a) $\frac{4^{-3}}{2^{-8}}$,
(b) $\frac{1}{\sqrt[2]{x^{4}}}$,
$(c) b^{8}(2 b)^{4}$
(d) $\frac{\left(6 y^{3}\right)^{4}}{2 y^{5}}$,

Example 3. The half-life of strontium-90, ${ }^{90} \mathrm{Sr}$, is 25 years. This means that half of any given quantity of ${ }^{90} \mathrm{Sr}$ will disintegrate in 25 years.
(a) If a sample of ${ }^{90} \mathrm{Sr}$ has a mass of 24 mg , find an expression for the mass $\mathrm{m}(\mathrm{t})$ that remains after t years.
(b) Find the mass remaining after 40 years, correct to the nearest milligram.

