Lecture Note 3 (Ref. text book page 45)

1.4 Exponential Functions

The function $f(x) = 2^x$ is called an exponential function because the variable, x, is the exponent. It should not be confused with the power function $g(x) = x^2$, in which the variable is the base.

In general, an exponential function is a function of the form

 $f(x) = b^x$

where b is a positive constant.

We call the function

$$f(x) = e^x$$

the natural exponential f unction, where e denotes the Euler number. An approximation of the number e to five decimal is 2.71828

Note that all of these graphs pass through the same point (0, 1) because $b^0 = 1$ for $b \neq 0$. If 0 < b < 1, the exponential function decreases; if b = 1, it is a constant; and if b > 1, it increases. These three cases are illustrated in the next Figure .

Observe that if $b \neq 1$, then the exponential function $y = b^x$ has domain \mathbb{R} and range $(0, +\infty)$. Notice also that the graph of $y = (1/b)^x$ is just the reflection of the graph of $y = b^x$ about the y-axis.

Example 1 Sketch the graph of $y = 3 - 2^x$ and determine its domain and range.

Page **1** of **2**

08/20/2021

Laws of Exponents If *a* and *b* are positive numbers and *x* and *y* are any real numbers, then

1.
$$b^{x+y} = b^x b^y$$
 2. $b^{x-y} = \frac{b^x}{b^y}$ **3.** $(b^x)^y = b^{xy}$ **4.** $(ab)^x = a^x b^x$

Example 2. Use the Law of Exponents to rewrite and simplify the expressions

(a)
$$\frac{4^{-3}}{2^{-8}}$$
, (b) $\frac{1}{\sqrt[2]{x^4}}$,
(c) $b^8(2b)^4$ (d) $\frac{(6y^3)^4}{2y^5}$,

Example 3. The half-life of strontium-90, 90 Sr, is 25 years. This means that half of any given quantity of 90 Sr will disintegrate in 25 years.

(a) If a sample of 90 Sr has a mass of 24 mg, find an expression for the mass m(t) that remains after t years.

(b) Find the mass remaining after 40 years, correct to the nearest milligram.