1.5 Inverse Functions and Logarithms

1 Definition A function f is called a one-to-one function if it never takes on the same value twice; that is,

$$
f\left(x_{1}\right) \neq f\left(x_{2}\right) \quad \text { whenever } x_{1} \neq x_{2}
$$

Thus if $f(x)$ is a one to one function, then different inputs yield different out put. The following Horizontal Line Test helps to determine if a given graph is the graph of a one-to-one function

Horizontal Line Test A function is one-to-one if and only if no horizontal line intersects its graph more than once.

Example 1. Is the function $f(x)=x^{3}$ one -to-one?
Example 2. Is the function $f(x)=x^{2}$ one -to-one?

2 Definition Let f be a one-to-one function with domain A and range B. Then its inverse function f^{-1} has domain B and range A and is defined by

$$
f^{-1}(y)=x \quad \Longleftrightarrow \quad f(x)=y
$$

for any y in B.

This definition says that if f maps x into y , then f^{-1} maps y back into x . (If f were not one-to-one, then f^{-1} would not be uniquely defined.) We usually reverse the roles of x and y in Definition 2 and write

$$
f^{-1}(x)=y \Leftrightarrow f(\mathrm{y})=\mathrm{x} .
$$

These lead to the following cancellation equations :

$$
f^{-1}(f(x))=x \quad \text { and } \quad f\left(f^{-1}(y)\right)=y
$$

Now lets see how to compute inverse functions.

5 How to Find the Inverse Function of a One-to-One Function f

STEP 1 Write $y=f(x)$.
STEP 2 Solve this equation for x in terms of y (if possible).
STEP 3 To express f^{-1} as a function of x, interchange x and y.
The resulting equation is $y=f^{-1}(x)$.

Example 3. Find the inverse function of the functions :
(a) $f(x)=2 x+17$
(b) $f(x)=x^{3}+2$.

Logarithmic functions

The logarithmic function with base \mathbf{b} and is denoted by $\log _{b}$ is defined to be the inverse function of the exponential function with base b. Therefore, the cancellation equations imply that

$$
\log _{b}(x)=y \Leftrightarrow b^{y}=x
$$

The logarithmic function with base e is called the natural logarithm and has special notation

$$
\log _{e}(x)=\ln (x)
$$

Laws of Logarithms If x and y are positive numbers, then

1. $\log _{b}(x y)=\log _{b} x+\log _{b} y$
2. $\log _{b}\left(\frac{x}{y}\right)=\log _{b} x-\log _{b} y$
3. $\log _{b}\left(x^{r}\right)=r \log _{b} x \quad$ (where r is any real number)

$$
\begin{align*}
\ln \left(e^{x}\right) & =x & & x \in \mathbb{R} \tag{9}\\
e^{\ln x} & =x & & x>0
\end{align*}
$$

In particular, if we set $x=1$, we get

$$
\ln e=1
$$

Example 4 Use the laws of 1 ogarithms to evaluate $\log _{2} 80-\log _{2} 5$.
solution Using Law 2, we have

$$
\log _{2} 80-\log _{2} 5=\log _{2}\left(\frac{80}{5}\right)=\log _{2} 16=4 \quad \text { because } 2^{4}=16
$$

Example 5 Find x if $\ln (x)=5$.
sOLUTION 1 From the definition we see that

$$
\ln x=5 \quad \text { means } \quad e^{5}=x \quad \text { Therefore } x=e^{5} .
$$

SOLUTION 2 Start with the equation

$$
\ln x=5
$$

and apply the exponential function to both sides of the equation:

$$
e^{\ln x}=e^{5}
$$

But the second cancellation equation in (9) says that $e^{\ln x}=x$. Therefore $x=e^{5}$.

