Lecture Note 4 (Ref. text book page 55)

1.5 Inverse Functions and Logarithms

1 Definition A function f is called a **one-to-one function** if it never takes on the same value twice; that is,

 $f(x_1) \neq f(x_2)$ whenever $x_1 \neq x_2$

Thus if f(x) is a one to one function, then different inputs yield different out put. The following Horizontal Line Test helps to determine if a given graph is the graph of a one-to-one function

Horizontal Line Test A function is one-to-one if and only if no horizontal line intersects its graph more than once.

Example 1. Is the function $f(x) = x^3$ one -to-one?

Example 2. Is the function $f(x) = x^2$ one -to-one?

2 Definition Let f be a one-to-one function with domain A and range B. Then its **inverse function** f^{-1} has domain B and range A and is defined by

$$f^{-1}(y) = x \iff f(x) = y$$

for any y in B.

This definition says that if f maps x into y, then f^{-1} maps y back into x. (If f were not one-to-one, then f^{-1} would not be uniquely defined.) We usually reverse the roles of x and y in Definition 2 and write

 $f^{-1}(x) = y \Leftrightarrow f(\mathbf{y}) = \mathbf{x}.$

These lead to the following **cancellation equations** :

$$f^{-1}(f(x)) = x$$
 and $f(f^{-1}(y)) = y$

Now lets see how to compute inverse functions.

5 How to Find the Inverse Function of a One-to-One Function f

STEP 1 Write y = f(x).

STEP 2 Solve this equation for *x* in terms of *y* (if possible).

STEP 3 To express f^{-1} as a function of *x*, interchange *x* and *y*. The resulting equation is $y = f^{-1}(x)$.

Example 3. Find the inverse function of the functions :

(a) f(x) = 2x + 17(b) $f(x) = x^3 + 2$.

Logarithmic functions

The logarithmic function with base **b** and is denoted by \log_b is defined to be the inverse function of the exponential function with base *b*. Therefore, the cancellation equations imply that

$$\log_b(x) = y \iff b^y = x$$

The logarithmic function with base e is called the **natural logarithm** and has special notation

 $\log_e(x) = \ln(x).$

Laws of Logarithms If *x* and *y* are positive numbers, then

1.
$$\log_b(xy) = \log_b x + \log_b y$$

2. $\log_b\left(\frac{x}{y}\right) = \log_b x - \log_b y$
3. $\log_b(x^r) = r \log_b x$ (where *r* is any real number)

$$\ln(e^{x}) = x \qquad x \in \mathbb{R}$$
$$e^{\ln x} = x \qquad x > 0$$

In particular, if we set x = 1, we get

Example 4 Use the laws of logarithms to evaluate $\log_2 80 - \log_2 5$.

SOLUTION Using Law 2, we have

$$\log_2 80 - \log_2 5 = \log_2 \left(\frac{80}{5}\right) = \log_2 16 = 4$$
 because $2^4 = 16$.

 $\ln e = 1$

Example 5 Find x if $\ln(x) = 5$.

SOLUTION 1 From the definition we see that

 $\ln x = 5$ means $e^5 = x$ Therefore $x = e^5$. SOLUTION 2 Start with the equation

 $\ln x = 5$

and apply the exponential function to both sides of the equation:

$$e^{\ln x} = e^5$$

But the second cancellation equation in (9) says that $e^{\ln x} = x$. Therefore $x = e^5$.