Lecture Note 6 (Ref. text book page 83)

2.2 The Limit of a Function

In this section we will see the intuitive meaning and definition. Let's start with an example

Example 1 Find the limit of $f(x) = \frac{3x^2 - 12}{x - 2}$ when x = 2

When we calculate the value of function at x = 2, it is $f(2) = \frac{32^2 - 12}{2 - 2} = \frac{0}{0}$ is undefined. When we approach from the left side of 2 we have the following table,

x	1.5	1.8	1.9	1.99	1.999		$x \to 2^-$
f(x)	10.5	11.4	11.7	11.97	11.997	• • •	$f(x) \to 12$

When we approach from the right side of 2 we have the following table,

x	2.5	2.2	2.1	2.01	2.001		$x \to 2^+$
f(x)	13.5	12.6	12.3	12.03	12.003	•••	$f(x) \to 12$

From the tables we see that the closer x is to 2 (on either side of 2), the closer f(x) is 12. We express this by saying the limit of the function f(x) as x approaches 2 is 12. The notation for this is

$$\lim_{x \to 2} \frac{3x^2 - 12}{x - 2} = 12$$

Definition Limit of a Function: The function f has the limit L as x approaches a, written $\lim_{x\to a} f(x) = L$ or $f(x) \to L$ as $x \to a$ if the value of f(x) can be made as close to the number L as we please by taking x sufficiently close to (but not equal to) a.

Example 2 Find the limit of the following functions at indicated value.

08/24/2021

Theorem Let f be a function that is defined for all values of x close to x = a with the possible exception of a itself. Then

$$\lim_{x \to a} f(x) = L \quad \text{if and only if} \quad \lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x) = L$$

Infinite Limits

Example 3 Find
$$\lim_{x \to 0} \frac{1}{x^2}$$
 if it exists.

$$\lim_{x \to 0^{-1}} \frac{1}{\pi^2} = \frac{1}{0^2} = \infty$$

$$\lim_{x \to 0^{+1}} \frac{1}{\chi^2} = \frac{1}{0^2} = \infty$$

So,
$$\lim_{\chi \to 0} \frac{1}{\chi^2} = \infty$$
.

Definition The vertical line x = a is called a **vertical asymptote** of the curve y = f(x) if at least one of the following statements is true:

• $\lim_{x \to a} f(x) = \infty$	• $\lim_{x \to a^-} f(x) = \infty$	• $\lim_{x \to a^+} f(x) = \infty$
• $\lim_{x \to a} f(x) = -\infty$	• $\lim_{x \to a^-} f(x) = -\infty$	• $\lim_{x \to a^+} f(x) = -\infty$

Example 4. Find the vertical asymptotes of the following functions.

(a)
$$h(x) = \frac{5x}{x-5}$$
 $\lim_{x \to 5^-} \frac{5x}{x-5} = \frac{5(5)}{5-5} = \frac{25}{5} = -\infty$
 $\lim_{x \to 5^+} \frac{5x}{x-5} = \frac{5(5)}{5^+-5} = \frac{25}{5^+} = \infty$
So, $x = 5$ is a vertical asymptote of h.

(b)
$$f(x) = \cot x = \frac{\cos x}{\sin x}$$
, $\sin x = 0 \Rightarrow x = n\pi$, $n \in \mathbb{Z}$

$$\chi = n\pi$$
 for all $n = \dots -2, -1, 0, 1, 2, \dots$ are
vertical asymptotes of f.

(c)
$$g(x) = \ln(x-2)$$

Here, the culprit is $x = 2$ since $\ln(x-2) = \ln 0$ A
Also, $Dom(3) = (2, \infty)$ and
 $\lim_{x \to 2^+} \ln(x-2) = -\infty$