Lecture Note 6 (Ref. text book page 83)
08/24/2021

2.2 The Limit of a Function

In this section we will see the intuitive meaning and definition. Let's start with an example
Example 1 Find the limit of $f(x)=\frac{3 x^{2}-12}{x-2}$ when $x=2$
When we calculate the value of function at $x=2$, it is $f(2)=\frac{32^{2}-12}{2-2}=\frac{0}{0}$ is undefined.
When we approach from the left side of 2 we have the following table,

x	1.5	1.8	1.9	1.99	1.999	\cdots	$x \rightarrow 2^{-}$
$f(x)$	10.5	11.4	11.7	11.97	11.997	\cdots	$f(x) \rightarrow 12$

When we approach from the right side of 2 we have the following table,

x	2.5	2.2	2.1	2.01	2.001	\cdots	$x \rightarrow 2^{+}$
$f(x)$	13.5	12.6	12.3	12.03	12.003	\cdots	$f(x) \rightarrow 12$

From the tables we see that the closer x is to 2 (on either side of 2), the closer $f(x)$ is 12 . We express this by saying the limit of the function $f(x)$ as x approaches 2 is 12.
The notation for this is

$$
\lim _{x \rightarrow 2} \frac{3 x^{2}-12}{x-2}=12
$$

Definition Limit of a Function: The function f has the limit L as x approaches a, written $\lim _{x \rightarrow a} f(x)=L$ or $f(x) \rightarrow L$ as $x \rightarrow a$ if the value of $f(x)$ can be made as close to the number L as we please by taking x sufficiently close to (but not equal to) a.

Example 2 Find the limit of the following functions at indicated value.
(a) $\lim _{x \rightarrow 3} x^{2} \quad \lim _{x} x^{2}=3^{2}=9$

$$
\lim _{x \rightarrow 3^{-}} x^{2}=3^{2}=9
$$

So

$$
\lim x^{2}=9
$$

$$
x \rightarrow 3
$$

(b) $g(x)=\left\{\begin{array}{ll}x-2 & \text { if } x \neq 3 \\ 2 & \text { if } x=3\end{array} \quad x=3\right.$
$\lim _{x \rightarrow 3^{-}} g(x)=3-2=1$ and $\lim _{x \rightarrow 3^{+}} g(x)=3-2=1$
So $\quad \lim g(x)=1$.

$$
\begin{aligned}
& \text { (c) } g(x)=\left\{\begin{array}{lll}
-2 & \text { if } x<0 \\
2 & \text { if } & x \geq 0
\end{array} \quad x=0\right. \\
& \lim _{x \rightarrow 0^{-}} g(x)=-2 \text { and } \lim _{x \rightarrow 0^{+}} g(x)=2 \\
& \text { So } \lim _{x \rightarrow 0} g(x)=D N E
\end{aligned}
$$

Theorem Let f be a function that is defined for all values of x close to $x=a$ with the possible exception of a itself. Then

$$
\lim _{x \rightarrow a} f(x)=L \quad \text { if and only if } \quad \lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)=L
$$

Infinite Limits

Example 3 Find $\lim _{x \rightarrow 0} \frac{1}{x^{2}}$ if it exists.
$\lim -\frac{1}{x^{2}}=\frac{1}{0^{2}}=\infty$ $x \rightarrow 0^{-}=\frac{1}{0^{2}}=\infty$ $\lim _{x \rightarrow 0^{+}} \frac{1}{x^{2}}=\frac{1}{0^{2}}=\infty$

S

Definition The vertical line $x=a$ is called a vertical asymptote of the curve $y=f(x)$ if at least one of the following statements is true:

- $\lim _{x \rightarrow a} f(x)=\infty$
- $\lim _{x \rightarrow a} f(x)=-\infty$
- $\lim _{x \rightarrow a^{-}} f(x)=\infty$
- $\lim _{x \rightarrow a^{-}} f(x)=-\infty$
- $\lim _{x \rightarrow a^{+}} f(x)=\infty$
- $\lim _{x \rightarrow a^{+}} f(x)=-\infty$

Example 4. Find the vertical asymptotes of the following functions.
(a) $h(x)=\frac{5 x}{x-5} \quad \lim _{x \rightarrow 5^{-}} \frac{5 x}{x-5}=\frac{5(5)}{5^{-}-5}=\frac{25}{0^{-}}=-\infty$

$$
\lim _{x \rightarrow 5^{-}} \frac{5 x}{x-5}=\frac{5(5)}{5^{+}-5}=\frac{25}{0^{+}}=\infty
$$

So, $x=5$ is a vertical asymptote of h.
(b) $f(x)=\cot x=\frac{\cos x}{\sin ^{2} x}, \quad \sin x=0 \Rightarrow x=n \pi, n \in \mathbb{Z}$

So

$$
x=n \pi \text { for all } n=\cdots-2,-1,0,1,2, \ldots \text { are }
$$ Vertical asymptotes of f.

$$
\lim _{x \rightarrow n \pi^{-}} \cot x=-\infty \text { and } \lim _{x \rightarrow n \pi^{+}} \cot x=\infty
$$

(c) $g(x)=\ln (x-2)$

Here, the culprit is $x=2$ since $\left.\ln (x-2)\right|_{x=2}=\ln 0 \Delta$ Also, $\operatorname{Dom}(9)=(2, \infty)$ and

$$
\lim _{x \rightarrow 2^{+}} \ln (x-2)=-\infty
$$

