Lecture Note 8 (Ref. text book page 114)

# 2.5 Continuity

A function is continuous at a point if the graph of the function at that point is devoid of holes, gaps, jumps, or breaks.

## Continuity of a Function at a Number

A function f is **continuous at a number** a if  $\lim f(x) = f(a)$ 

If f is not continuous at x = a, then f is said to be **discontinuous** at x = a. Also, f is **continuous on an interval** if f is continuous at every number in the interval.

 $x \rightarrow a$ 

**Example 1** Find the values of x for which each function is discontinuous.

(a) 
$$f(x) = \frac{x^2 - x - 2}{x - 2}$$
  
(c)  $g(x) = \begin{cases} \frac{x^2 - x - 2}{x - 2} & \text{if } x \neq 2\\ 1 & \text{if } x = 2 \end{cases}$ 

# **Properties of Continuous Functions**

**Theorem 4:** If f and g are continuous at a and c is a constant, then the following functions are also continuous at a:

1.  $[f(x)]^n$ , where  $n \in \mathbb{R}$ , is continuous at x = a whenever it is defined at that number.

(b)  $f(x) = \begin{cases} \frac{1}{x^2} & \text{if } x \neq 0\\ 1 & \text{if } x = 0 \end{cases}$ 

- 2.  $f \pm g$
- 3. *cf*
- 4. fg
- 5. f/g, provided that  $g(a) \neq 0$ .



2. The identity function f(x) = x is continuous every where.

**Theorem 7:** The following types of functions are continuous at every number in their domains: polynomials, rational functions, root functions, trigonometric functions, inverse trigonometric functions, exponential functions, & logarithmic functions.

**Example 2** Find the values of x for which each function is continuous.

(a) 
$$f(x) = 7x^4 - 3x^2 + 5x - 8$$
  
(b)  $g(x) = \frac{5x^{11} + 3x^2 - 6}{x^2 + 4}$   
(c)  $h(x) = \frac{x^3 + 2x^2 - 1}{5 - 3x}$   
(d)  $k(x) = \frac{\ln(x) + \tan^1 x}{x^2 - 1}$ 

**Example 3** Evaluate  $\lim_{x \to \pi} \frac{\sin x}{2 + \cos x}$ 

### The Intermediate Value Theorem

If f is a continuous function on a closed interval [a, b] and M is any number between f(a) and f(b), then there is at least one number c in [a, b] such that f(c) = M.

#### Existence of Zeros of a Continuous Function

If f is a continuous function on a closed interval [a, b], and if f(a) and f(b) have opposite signs, then there is at least one solution of the equation f(x) = 0 in the interval (a, b).

**Example 4** Let  $f(x) = 4x^3 - 6x^2 + 3x - 2$ 

- (a) Show that f is continuous for all values of x.
- (b) Show that there exists a number x = c where  $c \in (1, 2)$  and f(c) = 0.