Lecture Note 8 (Ref. text book page 114)

2.5 Continuity

A function is continuous at a point if the graph of the function at that point is devoid of holes, gaps, jumps, or breaks.

Continuity of a Function at a Number

A function f is continuous at a number a if $\lim f(x)=f(a)$

$$
x \rightarrow a
$$

If f is not continuous at $x=a$, then f is said to be discontinuous at $x=a$. Also, f is continuous on an interval if f is continuous at every number in the interval.

Example 1 Find the values of x for which each function is discontinuous.
(a) $f(x)=\frac{x^{2}-x-2}{x-2}$
(b) $f(x)= \begin{cases}\frac{1}{x^{2}} & \text { if } x \neq 0 \\ 1 & \text { if } x=0\end{cases}$
(c) $g(x)= \begin{cases}\frac{x^{2}-x-2}{x-2} & \text { if } x \neq 2 \\ 1 & \text { if } x=2\end{cases}$

Properties of Continuous Functions

Theorem 4: If f and g are continuous at a and c is a constant, then the following functions are also continuous at a:

1. $[f(x)]^{n}$, where $n \in \mathbb{R}$, is continuous at $x=a$ whenever it is defined at that number.
2. $f \pm g$
3. $c f$
4. $f g$
5. f / g, provided that $g(a) \neq 0$.

Note: 1 . The constant function $f(x)=c$ is continuous every where.
2. The identity function $f(x)=x$ is continuous every where.

Theorem 7: The following types of functions are continuous at every number in their domains: polynomials, rational functions, root functions, trigonometric functions, inverse trigonometric functions, exponential functions, \& logarithmic functions.

Example 2 Find the values of x for which each function is continuous.
(a) $f(x)=7 x^{4}-3 x^{2}+5 x-8$
(c) $h(x)=\frac{x^{3}+2 x^{2}-1}{5-3 x}$
(b) $g(x)=\frac{5 x^{11}+3 x^{2}-6}{x^{2}+4}$
(d) $k(x)=\frac{\ln (x)+\tan ^{1} x}{x^{2}-1}$

Example 3 Evaluate $\lim _{x \rightarrow \pi} \frac{\sin x}{2+\cos x}$

The Intermediate Value Theorem

If f is a continuous function on a closed interval $[a, b]$ and M is any number between $f(a)$ and $f(b)$, then there is at least one number c in $[a, b]$ such that $f(c)=M$.

Existence of Zeros of a Continuous Function

If f is a continuous function on a closed interval $[a, b]$, and if $f(a)$ and $f(b)$ have opposite signs, then there is at least one solution of the equation $f(x)=0$ in the interval (a, b).

Example 4 Let $f(x)=4 x^{3}-6 x^{2}+3 x-2$
(a) Show that f is continuous for all values of x.
(b) Show that there exists a number $x=c$ where $c \in(1,2)$ and $f(c)=0$.

