2.6 Limits at Infinity; Horizontal Asymptotes

In this section we investigate the limit of a function at infinity.

The Limit of a Function at Infinity

The function f has the limit L as x increases without bound (or as x approaches infinity), written

$$
\lim _{x \rightarrow \infty} f(x)=L
$$

if $f(x)$ can be made arbitrarily close to L by taking x large enough.
Similarly, the function f has the limit M as x decreases without bound (or as x approaches negative infinity), written

$$
\lim _{x \rightarrow-\infty} f(x)=M
$$

if $f(x)$ can be made arbitrarily close to M by taking x to be negative and sufficiently large in absolute value.

Note

(a) $\infty+\infty=\infty$
(e) $0 / 0$ is undefined
(i) $\infty-\infty$ is undefined
(b) $\infty \cdot \infty=\infty$
(f) $0 / c=0, c \neq 0$
(c) $\infty^{n}=\infty, n>0$
(g) $c / 0$ is undefined
(j) ∞ / ∞ is undefined
(d) $c \cdot \infty=\infty, c>0$
(h) $c / \infty=0$
(k) 1^{∞} is undefined

Definition The line $y=L$ is called a horizontal asymptote of the curve $y=f(x)$ if either

$$
\lim _{x \rightarrow \infty} f(x)=L \quad \text { or } \quad \lim _{x \rightarrow-\infty} f(x)=L
$$

Example 1 Sketch the graph of an example of a function f that satisfies all of the given conditions.

- $\lim _{x \rightarrow 2} f(x)=\infty$
- $\lim _{x \rightarrow-2^{-}} f(x)=-\infty$
- $\lim _{x \rightarrow \infty} f(x)=0$
- $\lim _{x \rightarrow-2^{+}} f(x)=\infty$
- $\lim _{x \rightarrow-\infty} f(x)=0$
- $f(0)=0$

Math 1610

Theorem If $r>0$ is a rational number then $\lim _{x \rightarrow \infty} \frac{1}{x^{r}}=0, \lim _{x \rightarrow-\infty} \frac{1}{x^{r}}=0$ for $r>0$ such that x^{r} is defined.

Example 2 Find the limit or show that it does not exist.
(a) $\lim _{x \rightarrow \infty} \frac{\sqrt{9 x^{6}-x}}{x^{3}+1}$
(b) $\lim _{x \rightarrow \infty} \frac{3 x^{2}-x-2}{5 x^{2}+4 x+1}$
(c) $\lim _{x \rightarrow-\infty} \frac{x-2}{x^{2}+1}$

Example 3 Compute
(a) $\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+1}-x\right)$
(b) $\lim _{x \rightarrow \infty}\left(x^{2}-x\right)$

Example 4 Find the limit or show that it does not exist.
(a) $\lim _{x \rightarrow \infty} \frac{1-e^{x}}{1+2 e^{x}}$
(b) $\lim _{x \rightarrow \infty}\left(e^{-2 x} \cos x\right)$
(c) $\lim _{x \rightarrow \infty}\left[\ln \left(1+x^{2}\right)-\ln (1+x)\right]$

