### 2.7 Derivatives and Rates of Change

The derivative of a function $f$ at a number $a$, denoted by $f^{\prime}(a)$, is

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

if this limit exists.

Example 1 Find the derivative of the function $f(x)=x^{2}-8 x+9$ at the number $a$.

The tangent line to $y=f(x)$ at $(a, f(a))$ is the line through $(a, f(a))$ whose slope is equal to $f^{\prime}(a)$, the derivative of $f$ at $a$.

Example 2 Find an equation of the tangent line to the curve $y=x^{3}-3 x+1$ at the point $(2,3)$.

Rates of Change: Suppose $y$ is a quantity that depends on another quantity $x$. Thus $y$ is a function of $x$ and we write $y=f(x)$. If $x$ changes from $x_{1}$ to $x_{2}$, then the change in $x$ (also called the increment of $x$ ) is $\Delta x=x_{2}-x_{1}$ and the corresponding change in $y$ is $\Delta y=f\left(x_{2}\right)-f\left(x_{1}\right)$. The difference quotient

$$
\frac{\Delta y}{\Delta x}=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}
$$

is called the average rate of change of $y$ with respect to $x$ over the interval $\left[x_{1}, x_{2}\right]$. By analogy with velocity, we consider the average rate of change over smaller and smaller intervals by letting $x_{2}$ approach $x_{1}$ and therefore letting $\Delta x$ approach 0 . The limit of these average rates of change is called the (instantaneous) rate of change of $y$ with respect to $x$ at $x=x_{1}$, that is,

$$
\text { instantaneous rate of change }=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim _{x_{2} \rightarrow x_{1}} \frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}
$$

We recognize this limit as being the derivative $f^{\prime}\left(x_{1}\right)$.

Velocities: If $s=f(t)$ is the position function of a particle that moves along a straight line, then $f^{\prime}(a)$ is the rate of change of the displacement $s$ with respect to the time $t$. In other words, $f^{\prime}(a)$ is the velocity of the particle at time $t=a$. The speed of the particle is the absolute value of the velocity, that is, $\left|f^{\prime}(a)\right|$

Example 3 If a ball is thrown into the air with a velocity of $40 \mathrm{ft} / \mathrm{s}$, its height (in feet) after $t$ seconds is given by $y=40 t-16 t^{2}$. Find the velocity when $t=2$.

