3.1 Derivatives of Polynomials and Exponential Functions

In this section we learn how to differentiate constant functions, power functions, polynomials and exponential functions.

Suppose c is a constant and f and g are both differentiable functions, and n is any real number, then

1. The Power Rule:

$$
\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}
$$

2. Derivative of a Constant Function:

$$
\frac{d}{d x}(c)=0
$$

3. The Constant Multiple Rule:

$$
\frac{d}{d x}[c f(x)]=c \frac{d}{d x} f(x)
$$

4. The Sum and Difference Rule:

$$
\frac{d}{d x}[f(x) \pm g(x)]=\frac{d}{d x} f(x) \pm \frac{d}{d x} g(x)
$$

5. Derivative of the Natural Exponential Function: The number e is an irrational number and its approximate value is 2.71828 ,

$$
\frac{d}{d x}\left(e^{x}\right)=e^{x}
$$

Example 1 Find the derivative of the function f by using the rules of differentiation.
(a) $f(x)=5$
(d) $f(x)=x^{3}$
(g) $y=\frac{s-\sqrt{s}}{s^{2}}$
(b) $f(x)=-2$
(e) $f(x)=x^{-12}$
(c) $f(x)=e$
(f) $f(R)=4 \pi R^{2}$
(h) $f(t)=\frac{2}{t^{5}}-\frac{3}{t^{4}}+\frac{7}{t}-6$

Example 2 Find equations of the tangent line and normal line to the curve $y=x^{4}+2 e^{x}$ at the point (0,2).

Example 3 The equation of motion of a particle is $s=t^{3}-3 t$, where s is in meters and t is in seconds.
(a) Find the velocity and acceleration as functions of t.
(b) Find the acceleration after 5 s .

Example 4 Find the points on the curve $y=2 x^{3}+3 x^{2}-12 x+6$ where the tangent line is horizontal.

