Lecture Note 20 (Ref. text book page 251)

### 3.10 Linear Approximations and Differentials

## Linearization

The idea is that it might be easy to calculate a value $f(a)$ of a function, but difficult (or even impossible) to compute nearby values of $f$. So we settle for the easily computed values of the linear function $L$ whose graph is the tangent line of $f$ at $(a, f(a))$.

The following function is called the linear approximation or tangent line approximation of $f$ at a,

$$
f(x) \approx f(a)+f^{\prime}(a)(x-a)
$$

The linear functions whose graph is this tangent line, that is,

$$
L(x)=f(a)+f^{\prime}(a)(x-a)
$$

is called the linearization of $f$ at $a$.

Example 1 Find the linearization $L(x)$ of the function $f(x)=\sin x$ at $\pi / 6$.

## Differentials

The ideas behind linear approximations are sometimes formulated in the terminology and notation of differentials. if $y=f(x)$, where $f$ is a differentiable function, then the differential $d x$ is an independent variable; that is, $d x$ can be given the value of any real number.

The differential $d y$ is then defined in terms of $d x$ by the equation

$$
d y=f^{\prime}(x) d x
$$

So $d y$ is a dependent variable; it depends on the values of $x$ and $d x$.

The geometric meaning of differentials is shown in the Figure. Let $P(x, f(x))$ and $Q(x+\Delta x, f(x+\Delta x))$ be points on the graph of $f$ and let $d x=\Delta x$. The corresponding change in $y$ is

$$
\Delta y=f(x+\Delta x)-f(x)
$$

The slope of the tangent line $P R$ is the derivative $f^{\prime}(x)$. Thus the directed distance from $S$ to $R$ is $f^{\prime}(x) d x=d y$. Therefore $d y$ represents the amount that the tangent line rises or falls (the change in the linearization), whereas $\Delta y$ represents the amount that the curve $y=f(x)$ rises or falls when $x$ changes by an amount $d x$.


Example 2 Find the differential of each function.
(a) $y=\frac{1+2 u}{1+3 u}$
(b) $y=\theta^{2} \sin 2 \theta$

Exampla 3 Use a linear approximation (or differentials) to estimate the given number.

$$
(1.999)^{5}
$$

Exampla 4 Use a linear approximation (or differentials) to estimate the given number. $e^{-0.01}$

