3.2 The Product and Quotient Rules

In this section we learn how to differentiate using the product and quotient rules.
Let f and g be both differentiable functions. Then

1. The Product Rule:

$$
\frac{d}{d x}[f(x) g(x)]=f(x) \frac{d}{d x}[g(x)]+g(x) \frac{d}{d x}[f(x)]
$$

2. The Quotient Rule:

$$
\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]=\frac{g(x) \frac{d}{d x}[f(x)]-f(x) \frac{d}{d x}[g(x)]}{[g(x)]^{2}}
$$

Example 1 Find the derivative of the given function by using the appropriate rules of differentiation.
(a) $f(x)=\left(3 x^{2}-5 x\right) e^{x}$
(e) $f(x)=\frac{x}{x^{2}-1}$
(b) $y=\frac{x}{e^{x}}$
(f) $G(x)=\frac{x^{2}-2}{2 x+1}$
(c) $g(t)=\sqrt{t} e^{t}$
(g) $g(x)=e^{x}(x+x \sqrt{x})$
(d) $f(x)=\frac{x^{2}}{1+e^{x}}$
(h) $J(v)=\left(v^{3}-2 v\right)\left(v^{-4}+v^{-2}\right)$

Example 2 Find equations of the tangent line to the curve $y=\frac{1+x}{1+e^{x}}$ at the point ($0, \frac{1}{2}$).
Example 3 If $f(x)=e^{x} g(x)$, where $g(0)=2$ and $g^{\prime}(0)=5$, find $f^{\prime}(0)$.
Example 4 Suppose that $f(4)=2, g(4)=5, f^{\prime}(4)=6$, and $g^{\prime}(4)=-3$. Find $h^{\prime}(4)$ if

$$
h(x)=\frac{g(x)}{f(x)+g(x)}
$$

Example 5 Find $f^{\prime}(x)$ and $f^{\prime \prime}(x)$ if $f(x)=\sqrt{x} e^{x}$

