Lecture Note 1&(Ref. text book page 197)

3.4 The Chain Rule

The Chain Rule If g is differentiable at x and f is differentiable at g(x), then the composite function $F = f \circ g$ defined by F(x) = f(g(x)) is differentiable at x and F' is given by the product

$$F'(x) = f'(g(x)) \cdot g'(x)$$

Example Find the derivative of the following functions by using the rules of differentiation.

(a) $F(x) = \sqrt[3]{1+4x}$ (b) $g(\theta) = \cos^2 \theta$ (c) $f(\theta) = \cos(\theta)^2$ (d) $y = (x^3 - 1)^{100}$ (e) $f(x) = \frac{1}{\sqrt[3]{x^2 + x + 1}}$ (f) $g(t) = \left(\frac{t-2}{2t+1}\right)^9$ (g) $y = (2x+1)^5(x^3-x+1)^4$ (h) $y = e^{\sin x}$

(i)
$$f(x) = \sin(\cos(\tan x))$$

(j) $y = e^{\sin 3\theta}$

Page **1** of **1**

09/17/2021

3.3 Derivatives of Trigonometric Functions (Cont'd)

Later in this course, you will know (easily) why this limit holds. For now, just take it that:

$$\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$$

Example 1 Evaluate the following

(a)	$\lim_{\theta \to 0} \frac{\cos \theta - 1}{\theta}$	(d)	$\lim_{x \to 0} \frac{\sin(3x)\sin(5x)}{x^2}$
(b)	$\lim_{\theta \to 0} \frac{\cos \theta - 1}{\sin \theta}$	(e)	$\lim_{x \to 0} x \cot(5x)$
(c)	$\lim_{t \to 0} \frac{\tan(6t)}{\sin(2t)}$	(f)	$\lim_{x \to 1} \frac{\sin(x-1)}{x^2 + x - 2}$

Example 2 Find the 89th derivative of $f(x) = \cos x$