3.4 The Chain Rule

The Chain Rule If g is differentiable at x and f is differentiable at $g(x)$, then the composite function $F=f \circ g$ defined by $F(x)=f(g(x))$ is differentiable at x and F^{\prime} is given by the product

$$
F^{\prime}(x)=f^{\prime}(g(x)) \cdot g^{\prime}(x)
$$

Example Find the derivative of the following functions by using the rules of differentiation.
(a) $F(x)=\sqrt[3]{1+4 x}$
(b) $g(\theta)=\cos ^{2} \theta$
(c) $f(\theta)=\cos (\theta)^{2}$
(d) $y=\left(x^{3}-1\right)^{100}$
(e) $f(x)=\frac{1}{\sqrt[3]{x^{2}+x+1}}$
(f) $g(t)=\left(\frac{t-2}{2 t+1}\right)^{9}$
(g) $y=(2 x+1)^{5}\left(x^{3}-x+1\right)^{4}$
(h) $y=e^{\sin x}$
(i) $f(x)=\sin (\cos (\tan x))$
(j) $y=e^{\sin 3 \theta}$

3.3 Derivatives of Trigonometric Functions (Cont'd)

Later in this course, you will know (easily) why this limit holds. For now, just take it that:

$$
\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1
$$

Example 1 Evaluate the following
(a) $\lim _{\theta \rightarrow 0} \frac{\cos \theta-1}{\theta}$
(d) $\lim _{x \rightarrow 0} \frac{\sin (3 x) \sin (5 x)}{x^{2}}$
(b) $\lim _{\theta \rightarrow 0} \frac{\cos \theta-1}{\sin \theta}$
(e) $\lim _{x \rightarrow 0} x \cot (5 x)$
(c) $\lim _{t \rightarrow 0} \frac{\tan (6 t)}{\sin (2 t)}$
(f) $\lim _{x \rightarrow 1} \frac{\sin (x-1)}{x^{2}+x-2}$

Example 2 Find the 89th derivative of $f(x)=\cos x$

