3.6 Derivatives of Logarithmic Functions

In this section we use implicit differentiation to find the derivatives of the logarithmic functions $y=\log _{b} x$ and, in particular, the natural logarithmic function $y=\ln x$.

$$
\frac{d}{d x}\left(\log _{b} x\right)=\frac{1}{x \ln b} \quad \Rightarrow \quad \frac{d}{d x}(\ln x)=\frac{1}{x}
$$

So by the chain rule we can generate the formula as follow

$$
\frac{d}{d x}(\ln u)=\frac{u^{\prime}}{u} \quad \text { or } \quad \frac{d}{d x}[\ln g(x)]=\frac{g^{\prime}(x)}{g(x)}
$$

where u is a function of x.

Example 1 Find the derivative of the following functions.
(a) $f(x)=\sin (\ln x)$
(b) $y=\ln \left(e^{-x}+x e^{-x}\right)$
(c) $g(x)=\log _{2}\left(x \log _{5} x\right)$

Logarithmic Differentiation

The calculation of derivatives of complicated functions involving products, quotients, or powers can often be simplified by taking logarithms. The steps of logarithmic differentiation is as following;

1. Take natural logarithms of both sides of an equation $y=f(x)$ and use the Laws of Logarithms to simplify.
2. Differentiate implicity with respect to x.
3. Solve the resulting equation for y^{\prime}.

Example 2 Use logarithmic differentiation to find the derivative of the function.
(a) $y=\left(x^{2}+2\right)^{2}\left(x^{4}+4\right)^{4}$
(b) $y=(\ln x)^{\cos x}$

Example 3 Find y^{\prime} if $x^{y}=y^{x}$.

Example 1 Find the derivative of the following functions.

$$
\begin{aligned}
& \text { (a) } f(x)=\sin (\ln x) \\
& \text { (a) } f(x)=\sin (\ln x) \\
& \Rightarrow f^{\prime}(x)=f^{\prime}(u) \cdot u^{\prime}(x) \\
& =\cos u \cdot \frac{1}{x} \\
& =\frac{\cos (\ln x)}{x} \\
& \left\{\begin{array} { r l }
{ (b) y = \operatorname { l n } (e ^ { - x } + x e ^ { - x }) } \\
{ = } & { \operatorname { l n } u , u = e ^ { - x } + x e ^ { - x } } \\
{ \Rightarrow y ^ { \prime } } & { = y ^ { \prime } (u) \cdot u ^ { \prime } (x) } \\
{ } & { = \frac { 1 } { u } \cdot u ^ { \prime } (x) } \\
{ = } & { \frac { u ^ { \prime } (x) } { u } } \\
{ = \frac { - e ^ { - x } + e ^ { - x } - x e ^ { - x } } { e ^ { - x } + x e ^ { - x } } } \\
{ = \frac { - x e ^ { - x } } { e ^ { - x } + x e ^ { - x } } }
\end{array} \left\{\begin{array}{l}
(c) g(x)=\log _{2}\left(x \log _{5} x\right) \\
y=\log _{2} u, u=x \log _{5} x \\
\Rightarrow 2^{y}=u \\
\Rightarrow \ln 2^{y}=\ln u \\
\Rightarrow y \ln 2=\ln u \Rightarrow y=\frac{\ln u}{\ln 2} \\
\Rightarrow y^{\prime}(x)=\frac{u^{\prime}(x)}{u \ln 2} \\
\text { But by product rule, } \\
u^{\prime}(x)=\log _{5}^{x}+\frac{1}{\ln 5} \\
\text { So, } \\
g^{\prime}(x)=\frac{\log _{5} x+\frac{1}{\ln 5}}{x(\ln 5)\left(\log _{5}\right)}
\end{array}\right.\right.
\end{aligned}
$$

Example 2 Use logarithmic differentiation to find the derivative of the function.

$$
\begin{aligned}
& \text { (a) } y=\left(x^{2}+2\right)^{2}\left(x^{4}+4\right)^{4} \\
& \Rightarrow \ln y=\ln \left(x^{2}+2\right)^{2}\left(x^{4}+4\right)^{4} \\
& =\ln \left(x^{2}+2\right)^{2}+\ln \left(x^{4}+4\right)^{4} \\
& =2 \ln \left(x^{2}+2\right)+4 \ln \left(x^{4}+4\right) \\
& \Rightarrow \frac{d}{d x}(\ln y)=\frac{d}{d x}\left(2 \ln \left(x^{2}+2\right)+4 \ln \left(x^{4}+4\right)\right) \\
& \Rightarrow \frac{y^{\prime}}{y}=2 \cdot \frac{2 x}{x^{2}+2}+4 \cdot \frac{4 x^{3}}{x^{4}+4} \\
& \begin{array}{l}
\Rightarrow y^{\prime}=y\left[\frac{4 x}{x^{2}+2}+\frac{16 x^{3}}{x^{4}+4}\right] \\
\text { Replace } y \\
\text { Example 3 Find } y^{\prime} \text { if } x^{y}=y^{x}
\end{array} \\
& \text { (b) } y=(\ln x)^{\cos x} \\
& \Rightarrow \ln y=\ln (\ln x)^{\cos x}=\cos x(\ln (\ln x)) \\
& \text { iv. } \ln y=\cos x(\ln (\ln x)) \\
& \text { Using product rule on the RHS, } \\
& \frac{y^{\prime}}{y}=-\sin x(\ln (\ln x))+\cos x\left(\frac{(\ln x)^{\prime}}{\ln x}\right) \\
& y^{\prime}=y\left[-\sin x(\ln (\ln x))+\frac{\cos x}{x \ln x}\right] \\
& =(\ln x)^{\cos x}\left[\frac{\cos x}{x \ln x}-\sin x(\ln (\ln x))\right]
\end{aligned}
$$

$$
\Rightarrow \ln x^{y}=\ln y^{x} \Rightarrow y \ln x=x \ln y .
$$

Using product rule and implicit differentiation,

$$
\begin{aligned}
& \text { Using product rule and implicit differentealim, } \\
& y\left(\frac{1}{x}\right)+y^{\prime} \ln x=x\left(\frac{y^{\prime}}{y}\right)+\ln y \Rightarrow y^{2}+x y y^{\prime} \ln x=x^{2} y^{\prime}+x y \ln y \\
& \Rightarrow x y y^{\prime} \ln x-x^{2} y^{\prime}=x y \ln y-y^{2} \Rightarrow\left(x y \ln x-x^{2}\right) y^{\prime}=x y \ln y-y^{2} \\
& \text { Hence }
\end{aligned}
$$

Hence,

$$
y^{\prime}=\frac{x y \ln y-y^{2}}{x y \ln x-x^{2}}
$$

