CHAPTER 4

APPLICATION OF DIFFERENTIATION

4.1 Maximum and Minimum Values

Definition
 1. Let c be a number in the domain D of a function f. Then $f(c)$ is the

- absolute maximum value of f on D if $f(c) \geq f(x)$ for all x in D.
- absolute minimum value of f on D if $f(c) \leq f(x)$ for all x in D.

2. The number $f(c)$ is a

- local maximum value of f if $f(c) \geq f(x)$ when x is near c.
- local minimum value of f if $f(c) \leq f(x)$ when x is near c.

The maximum and minimum values of f are called extreme values of f.
Question: Does a function always have an extreme value?
The Extreme Value Theorem If f is continuous on a closed interval $[a, b]$, then f attains an absolute maximum value $f(c)$ and an absolute minimum value $f(d)$ at some numbers c and d in $[a, b]$.

Question: What is the relation between a local minimum with the derivative?
Fermat's Theorem If f has a local maximum or minimum at c, and if $f^{\prime}(c)$ exists, then $f^{\prime}(c)=0$.

Definition A critical number of a function f is a number c in the domain of f such that either $f^{\prime}(c)=0$ or $f^{\prime}(c)$ does not exist.
Therefore if f has a local maximum or minimum at c, then c is a critical number of f.

To find the absolute maximum and minimum values of a continuous function f on a closed interval $[a, b]$:

1. Find the values of f at the critical numbers of f in (a, b).
2. Find the values of f at the endpoints of the interval.
3. The largest of the values from steps 1 and 2 is the absolute maximum value; the smallest of these values is the absolute minimum value.

Example 1 (a) Find all critical numbers of f.
(b) Find the absolute maximum and absolute minimum values of f on the given interval.
(i) $f(x)=x^{3}-6 x^{2}+5, \quad[-3,5]$
(iii) $f(t)=\left(t^{2}-4\right)^{3}, \quad[-2,3]$
(ii) $f(x)=x+1 / x, \quad[0.2,4]$
(iv) $f(t)=2 \cos t+\sin 2 t, \quad[0, \pi / 2]$

Example 1 (a) Find all critical numbers of f.
(b) Find the absolute maximum and absolute minimum values of f on the given interval.
(i) $f(x)=x^{3}-6 x^{2}+5,[-3,5]$
(iii) $f(t)=\left(t^{2}-4\right)^{3}, \quad[-2,3]$
(ii) $f(x)=x+1 / x, \quad[0.2,4]$
(iv) $f(t)=2 \cos t+\sin 2 t, \quad[0, \pi / 2]$

