Lecture Note 27 (Ref. text book page 350)

4.9 Antiderivatives

Definition A function F is called an **antiderivative** of f on an interval I if F'(x) = f(x) for all x in I.

Theorem If F is an antiderivative of f on an interval I, then the most general antiderivative of f on I is

F(x) + C

where C is an arbitrary constant.

Function	Particular antiderivative	Function	Particular antiderivative
cf(x)	cF(x)	$\sin x$	$-\cos x$
f(x) + g(x)	F(x) + G(x)	$\cos x$	$\sin x$
$x^n \ (n \neq -1)$	$\frac{x^{n+1}}{n+1}$	$\sec^2 x$	$\tan x$
$\left \frac{1}{x} \right $	$\ln x $	$\sec x \tan x$	$\sec x$
$\begin{bmatrix} x \\ e^x \end{bmatrix}$	e^x	$\frac{1}{\sqrt{1-x^2}}$	$\sin^{-1}x$
b^x	$\frac{b^x}{\ln b}$	$\frac{1}{1+x^2}$	$\tan^{-1}x$

In the table we list some particular antiderivatives. Each formula in the table is true because the derivative of the function in the right column appears in the left column. In particular, the first formula says that the antiderivative

Example 1 Find the most general antiderivative of the function. (Check your answer by differentiation.)

(a)
$$f(t) = \frac{3t^4 - t^3 + 6t^2}{t^4}$$
 (b) $r(\theta) = \sec \theta \tan \theta - 2e^{\theta}$ (c) $f(x) = \frac{2x^2 + 5}{x^2 + 1}$

Example 2 Find f where $f'(x) = (x+1)/\sqrt{x}$, f(1) = 5.