Lecture Note $2 \square$ (Ref. text book page 366)

5.1 Areas and Distances

Definition Let f be a nonnegative continuous function on $[a, b]$. Then, the area of the region under the graph of f is

$$
A=\lim _{n \rightarrow \infty}\left[f\left(x_{1}\right)+f\left(x_{2}\right)+\cdots+f\left(x_{n}\right)\right] \Delta x
$$

where $x_{1}, x_{2}, \cdots, x_{n}$ are arbitrary points in the n subintervals of $[a, b]$ of equal width $\Delta x=$ $(b-a) / n$.

Example 1

(a) Find an approximation of the area of the region R under the graph of the function $f=1 / x$ on the interval $[1,2]$. Use $n=4$ subintervals. Choose the left and right representative points and compare the results.
(b) Find an approximation of the area of the region R under the graph of the function $f(x)=$ $1+x^{2}$ on the interval $[-1,2]$. Use $n=3$ subintervals. Choose the representative points to be the right endpoints of the subintervals.

We can also derive similar result for the distance of a vehicle whose velocity information is given.
Example 2 The speed of a runner increased steadily during the first three seconds of a race. Her speed at half-second intervals is given in the table. Find lower and upper estimates for the distance that she traveled during these three seconds.

$t(\mathrm{~s})$	0	0.5	1.0	1.5	2.0	2.5	3.0
$v(\mathrm{ft} / \mathrm{s})$	0	6.2	10.8	14.9	18.1	19.4	20.2

