5.2 The Definite Integral

Definition If f is a function defined for $a \leq x \leq b$, we divide the interval $[a, b]$ into n subintervals of equal width $\Delta x=(b-a) / n$. We let $x_{0}=(a), x_{1}, x_{2}, \cdots, x_{n}(=b)$ be the endpoints of these subintervals and we let $x_{1}^{*}, x_{2}^{*}, \cdots, x_{n}^{*}$ be any sample points in these subintervals, so x_{i}^{*} lies in the i th subinterval $\left[x_{i-1}, x_{i}\right]$. Then the definite integral of f from a to b is

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x
$$

provided that this limit exists and gives the same value for all possible choices of sample points. If it exists, we say that f is integrable on $[a, b]$.

NOTE 1 The symbol \int is called an integral sign. In the notation $\int_{a}^{b} f(x) d x, f(x)$ is called the integrand and a and b are called the limits of integration; a is the lower limit and b is the upper limit. For now, the symbol $d x$ has no meaning by itself; $\int_{a}^{b} f(x) d x$ is all one symbol. The $d x$ simply indicates that the independent variable is x. The procedure of calculating an integral is called integration.

NOTE 2 The definite integral $\int_{a}^{b} f(x) d x$ is a number, it does not depend on x.
Example 1 Use the definition of the definite integral to express the limit as a definite integral on the given interval. $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{x_{i}^{*}}{\left(x_{i}^{*}\right)^{2}+4} \Delta x,[1,3]$

Theorem 1 If f is continuous on $[a, b]$, or if f has only a finite number of jump discontinuities, then f is integrable on $[a, b]$; that is, the definite integral $\int_{a}^{b} f(x) d x$ exists.

Theorem 2 If f is integrable on $[a, b]$, then

$$
\int_{a}^{b} f(x) d x=\lim _{x \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

where $\Delta x=\frac{b-a}{n}$ and $x_{i}=a+i \Delta x$

Evaluating Integrals

When we use a limit to evaluate a definite integral, we need to know how to work with sums. So have some sums formula as following.

- $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$
- $\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}$
- $\sum_{i=1}^{n} i^{3}=\left[\frac{n(n+1)}{2}\right]^{2}$
- $\sum_{i=1}^{n} c=n c$
- $\sum_{i=1}^{n} c a_{i}=c \sum_{i=1}^{n} a_{i}$
- $\sum_{i=1}^{n}\left(a_{i} \pm b_{i}\right)=\sum_{i=1}^{n} a_{i} \pm \sum_{i=1}^{n} b_{i}$

Example 2 Use the form of the definition of the integral given in Theorem 2 to evaluate the integral. $\int_{-2}^{0}\left(x^{2}+x\right) d x$

Example 3 Evaluate the integral by interpreting it in terms of areas. $\int_{-3}^{0}\left(1+\sqrt{9-x^{2}}\right) d x$

Properties of the Definite Integral

1. $\int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x$
2. $\int_{a}^{a} f(x) d x=0$
3. $\int_{a}^{b} c d x=c(b-a)$ where c is any constant
4. $\int_{a}^{b}[f(x) \pm g(x)] d x=\int_{a}^{b} f(x) d x \pm \int_{a}^{b} g(x) d x$
5. $\int_{a}^{b} c f(x) d x=c \int_{a}^{b} f(x) d x$ where c is any constant
6. $\int_{a}^{c} f(x)+\int_{c}^{b} f(x) d x=\int_{a}^{b} f(x) d x$
7. If $f(x) \geq 0$ for $a \leq x \leq b$, then $\int_{a}^{b} f(x) d x \geq 0$
8. If $f(x) \geq g(x)$ for $a \leq x \leq b$, then $\int_{a}^{b} f(x) d x \geq \int_{a}^{b} g(x) d x$
9. If $m \leq f(x) \leq M$ for $a \leq x \leq b$, then $m(b-a) \leq \int_{a}^{b} f(x) d x \leq M(b-a)$

Example 4 Use the properties of integrals to verify the inequality without evaluating the integral. $2 \leq \int_{-1}^{1} \sqrt{1+x^{2}} d x \leq 2 \sqrt{2}$

Example 5 Use Property 8 to estimate the value of the integral. $\int_{0}^{3} \frac{1}{x+4} d x$.

