Lecture Note 29 (Ref. text book page 378)

5.2 The Definite Integral

Definition If f is a function defined for $a \le x \le b$, we divide the interval [a, b] into n subintervals of equal width $\Delta x = (b - a)/n$. We let $x_0 = (a), x_1, x_2, \dots, x_n (= b)$ be the endpoints of these subintervals and we let $x_1^*, x_2^*, \dots, x_n^*$ be any **sample points** in these subintervals, so x_i^* lies in the *i*th subinterval $[x_{i-1}, x_i]$. Then the **definite integral of** f from a to b is

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}^{*})\Delta x$$

provided that this limit exists and gives the same value for all possible choices of sample points. If it exists, we say that f is **integrable** on [a, b].

NOTE 1 The symbol \int is called an **integral sign**. In the notation $\int_a^b f(x)dx$, f(x) is called the **integrand** and a and b are called the **limits of integration**; a is the **lower limit** and b is the **upper limit**. For now, the symbol dx has no meaning by itself; $\int_a^b f(x)dx$ is all one symbol. The dx simply indicates that the independent variable is x. The procedure of calculating an integral is called **integration**.

NOTE 2 The definite integral $\int_a^b f(x) dx$ is a number, it does not depend on x.

Example 1 Use the definition of the definite integral to express the limit as a definite integral on the given interval. $\lim_{n\to\infty}\sum_{i=1}^n \frac{x_i^*}{(x_i^*)^2 + 4}\Delta x, \ [1,3]$

Theorem 1 If f is continuous on [a, b], or if f has only a finite number of jump discontinuities, then f is integrable on [a, b]; that is, the definite integral $\int_a^b f(x) dx$ exists.

Theorem 2 If f is integrable on [a, b], then

$$\int_{a}^{b} f(x)dx = \lim_{x \to \infty} \sum_{i=1}^{n} f(x_i)\Delta x$$

where $\Delta x = \frac{b-a}{n}$ and $x_i = a + i\Delta x$

Evaluating Integrals

When we use a limit to evaluate a definite integral, we need to know how to work with sums. So have some sums formula as following.

•
$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

• $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$
• $\sum_{i=1}^{n} i^3 = \left[\frac{n(n+1)}{2}\right]^2$
• $\sum_{i=1}^{n} c = nc$
• $\sum_{i=1}^{n} ca_i = c \sum_{i=1}^{n} a_i$
• $\sum_{i=1}^{n} (a_i \pm b_i) = \sum_{i=1}^{n} a_i \pm \sum_{i=1}^{n} b_i$

Example 2 Use the form of the definition of the integral given in Theorem 2 to evaluate the integral. $\int_{-2}^{0} (x^2 + x) dx$

Example 3 Evaluate the integral by interpreting it in terms of areas. $\int_{-3}^{0} (1 + \sqrt{9 - x^2}) dx$

Properties of the Definite Integral
1.
$$\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx$$

2. $\int_{a}^{a} f(x)dx = 0$
3. $\int_{a}^{b} cdx = c(b-a)$ where c is any constant
4. $\int_{a}^{b} [f(x) \pm g(x)]dx = \int_{a}^{b} f(x)dx \pm \int_{a}^{b} g(x)dx$
5. $\int_{a}^{b} cf(x)dx = c\int_{a}^{b} f(x)dx$ where c is any constant
6. $\int_{a}^{c} f(x) + \int_{c}^{b} f(x)dx = \int_{a}^{b} f(x)dx$
7. If $f(x) \ge 0$ for $a \le x \le b$, then $\int_{a}^{b} f(x)dx \ge 0$
8. If $f(x) \ge g(x)$ for $a \le x \le b$, then $\int_{a}^{b} f(x)dx \ge \int_{a}^{b} g(x)dx$
9. If $m \le f(x) \le M$ for $a \le x \le b$, then $m(b-a) \le \int_{a}^{b} f(x)dx \le M(b-a)$

Example 4 Use the properties of integrals to verify the inequality without evaluating the integral. $2 \le \int_{-1}^{1} \sqrt{1+x^2} dx \le 2\sqrt{2}$

Example 5 Use Property 8 to estimate the value of the integral. $\int_0^3 \frac{1}{x+4} dx$.