5.3 Fundamental Theorem of Calculus

The Fundamental Theorem of Calculus, Part 1 If f is continuous on $[a, b]$, then the function g defined by

$$
g(x)=\int_{a}^{x} f(t) d t \quad a \leq x \leq b
$$

is continuous on $[a, b]$ and differentiable on (a, b), and $g^{\prime}(x)=f(x)$.

Example 1 Find the derivative of following functions.
(a) $h(u)=\int_{0}^{u} \frac{\sqrt{t}}{t+1} d t$
(b) $h(x)=\int_{1}^{e^{x}} \ln t d t$

The Fundamental Theorem of Calculus, Part 2 If f is continuous on $[a, b]$, then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

where F is any antiderivative of f, that is, a function such that $F^{\prime}=f$.

Example 2 Evaluate the integral.
(a) $\int_{0}^{1}(u+2)(u-3) d u$
(b) $\int_{0}^{3}\left(2 \sin x-e^{x}\right) d x$

Example 3 What is wrong with the equation? $\int_{-2}^{1} x^{-4} d x=\left.\frac{x^{-3}}{-3}\right|_{-2} ^{1}=-\frac{3}{8}$

