5.5 The Substitution Rule

Because of the Fundamental Theorem, it's important to be able to find antiderivatives. But our antidifferentiation formulas don't tell us how to evaluate integrals such as

$$
\int 2 x \sqrt{1+x^{2}} d x
$$

So we need the following rule to find antiderivatives of such functions.
The Substitution Rule If $u=g(x)$ is a differentiable function whose range is an interval I and f is continuous on I, then

$$
\int f(g(x)) g^{\prime}(x) d x=\int f(u) d u
$$

Notice that the Substitution Rule for integration was proved using the Chain Rule for differentiation. Notice also that if $u=g(x)$, then $d u=g^{\prime}(x) d x$, so a way to remember the Substitution Rule is to think of $d x$ and $d u$ as differentials.
Thus the Substitution Rule says: It is permissible to operate with $d x$ and $d u$ after integral signs as if they were differentials.

Example 1 Evaluate the indefinite integral
(a) $\int 2 x \sqrt{1+x^{2}} d x$
(b) $\int x^{2} e^{x^{3}} d x$
(c) $\int(2 x-4)^{8} d x$
(d) $\int \sin t \sqrt{1+\cos t} d t$
(e) $\int \cot x d x$
(f) $\int \frac{(\ln x)^{2}}{x} d x$
(g) $\int \frac{1+x}{1+x^{2}} d x$
(h) $\int x(2 x+5)^{8} d x$

The Substitution Rule for Definite Integrals If g^{\prime} is continuous on $[a, b]$ and f is continuous on the range of $u=g(x)$, then

$$
\int_{a}^{b} f(g(x)) g^{\prime}(x) d x=\int_{g(a)}^{g(b)} f(u) d u
$$

Example 2 Evaluate
(a) $\int_{0}^{\pi / 6} \frac{\sin t}{\cos ^{2} t}$
(b) $\int_{0}^{2}(x-1) e^{(x-1)^{2}} d x$
(c) $\int_{0}^{5} \frac{d x}{5 x+1}$
(d) $\int_{1}^{2} \frac{e^{1 / x}}{x^{2}} d x$

Integrals of symmetric functions Suppose f is continuous on $[-a, a]$.
(a) If f is even $[f(-x)=f(x)]$, then $\int_{-a}^{a} f(x) d x=2 \int_{0}^{a} f(x) d x$
(b) If f is odd $[f(-x)=-f(x)]$, then $\int_{-a}^{a} f(x) d x=0$

Example 3 Evaluate

(a) $\int_{-2}^{2}\left(x^{6}+1\right) d x$
(b) $\int_{-1}^{1} \frac{\tan x}{1+x^{2}+x^{6}} d x$

