\qquad Auburn ID: \qquad Section: 130

1. Let $f(x)=\left(\sqrt{x}+\frac{1}{\sqrt[3]{x}}\right)^{2}=\left(x^{1 / 2}+x^{-1 / 3}\right)^{2} \Rightarrow f^{\prime}(x)=2\left(x^{1 / 2}+x^{-1 / 3}\right)\left(\frac{1}{2} x^{-1 / 2}-\frac{1}{3} x^{-4 / 3}\right)$
(a) $(1 \mathrm{pts})$ Find $f(1)$

$$
\begin{aligned}
& \text { Find } f(1) \\
& =\left(\sqrt{1}+\frac{1}{\sqrt[3]{1}}\right)^{2}=(1+1)^{2}=4
\end{aligned}
$$

(b) (1 pts) Find the equation of tangent line to the graph of f at $x=1$

$$
\begin{aligned}
& \text { b) } \left.\begin{array}{l}
(1 \text { pts) Find the equation of tangent line to the graph of } f \text { at } x=1 \\
y-y_{1}=m\left(x-x_{1}\right) \\
y-4=m(x-1)
\end{array}\right\} m=\left.f^{\prime}(x)\right|_{x=1}=2\left(1^{1 / 2}+1^{-1 / 3}\right)\left(\frac{1}{2}(1)^{-1 / 2}-\frac{1}{3}(1)^{-4 / 3}\right)
\end{aligned}
$$

(c) (1 pts) Find the equation of normal line to the graph of f at $x=1$

$$
\begin{aligned}
m_{1} & =-\frac{1}{m} \\
& =-\frac{1}{2 / 3}\left\{\begin{array}{rl}
y-y_{1} & =m_{1}\left(x-x_{1}\right) \\
y-4 & =-\frac{3}{2}(x-1) \\
& =-\frac{3}{2}
\end{array}\left\{\begin{aligned}
y & =-\frac{3}{2} x+\frac{3}{2}+4 \\
& =-\frac{3}{2} x+\frac{11}{2}
\end{aligned}\right\} . \$\right. \text {, }
\end{aligned}
$$

2. (a) (1 pts) Differentiate $g(x)=4 x e^{x} \csc x$

$$
\begin{aligned}
& \text { Using product mule twice: } \\
& \begin{aligned}
g^{\prime}(x) & =\left(4 x e^{x}\right)^{\prime} \csc x+4 x e^{x}(\csc x)^{\prime} \\
& =\left(4 e^{x}+4 x e^{x}\right) \csc x+4 x e^{x}(-\cot x \csc x) \\
& =4 e^{x}[1+x-x \cot x] \csc x \\
& =4 e^{x}(1+x-x \cot x) \csc x
\end{aligned}
\end{aligned}
$$

(b) (1 pts) Find the $91^{\text {st }}$ derivative of $f(x)=\sin x$

$$
\begin{array}{ll}
f^{\prime}(x)=\cos x & \frac{91}{4}=22 R 3 \\
f^{\prime \prime}(x)=-\sin x 2 & \\
f^{\prime \prime \prime}(x)=-\cos x 3 & \\
f^{(t)}(x)=f^{(91)}(x)=f^{\prime \prime \prime}(x) \\
\end{array}
$$

(c) (1 pts) Evaluate $\lim _{x \rightarrow 1} \frac{\sin (x-1)}{x^{2}+x-2}$

$$
\begin{aligned}
& \text { te } \lim _{x \rightarrow 1} \frac{\sin (x-1)}{x^{2}+x-2} \\
& =\lim _{x \rightarrow 1} \frac{\sin (x-1)}{(x-1)(x+2)} \\
& = \\
& \lim _{x \rightarrow 1} \frac{\sin (x-1)}{x-1} \cdot \frac{1}{x+2} \\
& = \\
& \lim _{x \rightarrow 1} \frac{\sin (x-1)}{x-1} \cdot \lim _{x \rightarrow 1} \frac{1}{x+2}=\begin{array}{l}
=\lim _{x-1 \rightarrow 0} \frac{\sin (x-1)}{x-1} \cdot \frac{1}{1+2} \\
=\lim _{y \rightarrow 0} \frac{\sin y}{y} \cdot \frac{1}{3} \\
=(1) \cdot \frac{1}{3} \\
=\frac{1}{3}
\end{array} \text { }
\end{aligned}
$$

3. (a) (1 pts) Find the equation of tangent line to the circle $x^{2}+y^{2}=25$

$$
\begin{aligned}
& \text { at the point }(3,4) \\
& y-y_{1}=m\left(x-x_{1}\right) \quad\left(\frac{d}{d x}\left(x^{2}+y^{2}\right)=\frac{d}{d x}(25)\right. \\
& y-4=m(x-3) \\
& y-4=\frac{-3}{4}(x-3) \\
& y=-\frac{3}{4} x+\frac{9}{4}+4 \\
& =\frac{-3}{4} x+\frac{25}{4} \\
& \Rightarrow 2 x+2 y y^{\prime}=0 \\
& \Rightarrow y^{\prime}=\frac{-2 x}{2 y}=\frac{-x}{y} \\
& m=\left.y^{\prime}(x)\right|_{x=3} \\
& =\frac{-3}{y(3)}=\frac{-3}{4}
\end{aligned}
$$

(b) ($1 \frac{1}{2} \mathrm{pts}$) Find the derivative of the function $y=\sin ^{-1}(3 x+1)$
nth 1: $\quad y=\sin ^{-1}(3 x+1)$

$$
\begin{aligned}
& \Rightarrow \sin y=3 x+1 \\
& \Rightarrow \frac{d}{d x}(\sin y)=\frac{d}{d x}(3 x+1) \\
& \Rightarrow \cos y \cdot y^{\prime}=3 \\
& \Rightarrow y^{\prime}=\frac{3}{\cos y} \\
& =\frac{3}{\sqrt{-9 x^{2}-6 x}}
\end{aligned}
$$

$$
\left\{\begin{aligned}
\frac{m \text { mhd } 2:}{}: & =\sin ^{-1}(3 x+1) \\
& =\sin ^{-1} u, u=3 x+1 \\
\Rightarrow y^{\prime}(x) & =\frac{1}{\sqrt{1-u^{2}}} \cdot u^{\prime}(x)\left\{\begin{array}{l}
\text { Notice: } \\
2^{n o} \text { mithd } \\
\text { requires you } \\
\text { to remember } \\
\text { that }
\end{array}\right. \\
& =\frac{3}{\sqrt{1-(3 x+1)^{2}}}\left\{\begin{array}{r}
\frac{d}{d x}\left(\sin ^{-1} x\right) \\
\\
=\frac{1}{\sqrt{1-x^{2}}}
\end{array}\right\}
\end{aligned}\right.
$$

(c) ($1 \frac{1}{2} \mathrm{pts}$) Use logarithmic differentiation to find the derivative of the function $y=(\sqrt{x})^{3 x}$

$$
\begin{aligned}
\ln y & =\ln (\sqrt{x})^{3 x} \\
& =3 x \ln \sqrt{x} \\
& =3 x \ln x^{1 / 2} \\
& =\frac{3}{2} x \ln x
\end{aligned}\left\{\begin{aligned}
\frac{d}{d x}(\ln y) & =\frac{d}{d x}\left(\frac{3}{2} x \ln x\right) \\
\Rightarrow \frac{y^{\prime}}{y} & =\frac{3}{2} \ln x+\frac{3}{2} x\left(\frac{1}{x}\right) \\
& =\frac{y^{\prime}}{\prime}=y\left[\frac{3}{2} \ln x+\frac{3}{2}\right] \\
& (\sqrt{x})^{3 x}(\ln x+1)
\end{aligned}\right.
$$

