$\qquad$ Auburn ID No.: $\qquad$ Section: ..130

1. (a) (1 pts) A rectangular storage container with an open top is to have a volume of $10 \mathrm{~m}^{3}$. The length of its base is twice the width. Material for the base costs $\$ 20$ per square meter. Material for the sides costs $\$ 12$ per square meter. Find the cost of materials for the cheapest such container.

$$
\text { Volume }=e w h=2 w^{2} h=10 \Rightarrow h=\frac{5}{w^{2}}
$$

The cost function

$$
\begin{aligned}
C(w) & =20\left(2 w^{2}\right)+12(2(2 w h))+12(2 w h) \\
& =40 w^{2}+\frac{360}{w}
\end{aligned}
$$



So, $C^{\prime}(w)=80 w-\frac{360}{w^{2}} \Rightarrow 80 w^{3}-360=0 \Rightarrow w=\sqrt[3]{\frac{9}{2}}$ is intical Also, $C^{\prime \prime}(w)=80+\frac{520}{w^{3}}>0$ since $w>0$. Hence, $C$ attains abcolute minimum, $C\left(\sqrt[3]{\frac{2}{2}}\right)$ is the cheapest cost 0 matenals for such container.
(b) ( $\left.1 \frac{1}{2} \mathrm{pts}\right)$ Find the point on the line $y=3 x+2$ that is closest to the origin we are required to minimize

$$
d(x)=\sqrt{x^{2}+y^{2}}=\sqrt{x^{2}+(3 x+2)^{2}}=\sqrt{10 x^{2}+12 x+4} .
$$

Equivalently, we minimize $f(x)=10 x^{2}+12 x+4$.

$$
f^{\prime}(x)=20 x+12=0 \Rightarrow x=\frac{-12}{20}=-3 / 5
$$

Also, $f^{\prime \prime}(x)=20>0 \Rightarrow f$ and consequently $d$ are minimized at

$$
\begin{aligned}
& x=-3 / 5 \\
& \Rightarrow y=3(-3 / 5)+2=\frac{1}{5}
\end{aligned}
$$

Henna, the request point on the hin's $(x, y)=(-3 / 5, / 5)$.
2. (a) ( $\left.1 \frac{1}{2} \mathrm{pts}\right)$ Find the most general antiderivative of the function

$$
\begin{aligned}
& g(x)=\sec x \tan x-4 e^{x} \\
& \int g(x) d x=\int\left(\sec x \tan x-4 e^{x}\right) d x \\
&=\sec x-4 e^{x}+C
\end{aligned}
$$

(b) (2 pts) A particle is moving with acceleration $a(t)=t^{2}-3 t+4, \quad s(0)=0, \quad s(1)=2$. Find the position, $s(t)$ of the particle at time $t$.

$$
\begin{aligned}
& v(t)=\int a(t) d t=\int\left(t^{2}-3 t+4\right) d t=\frac{t^{3}}{3}-\frac{3}{2} t^{2}+4 t+c \\
& s(t)=\int v(t) d t=\int\left(\frac{t^{3}}{3}-\frac{3}{2} t^{2}+4 t+c\right) d t=\frac{t^{4}}{12}-\frac{3}{6} t^{3}+2 t^{2}+c t+1
\end{aligned}
$$

So,

$$
S(0)=0 \Rightarrow D=0 \text { and } s(1)=2 \Rightarrow \frac{1}{12}-\frac{3}{6}+2+c=2
$$

Hence,

$$
\Rightarrow c=5 / 12
$$

$$
S(t)=\frac{t^{4}}{12}-\frac{1}{2} t^{3}+2 t^{2}+\frac{5}{12} t
$$

3. (a) ( $1 \frac{1}{2} \mathrm{pts}$ ) Let $f(x)=8+2 x^{2}$ from $x=-1$ to $x=2$.
i. Estimate the area under the graph of $f$ using three rectangles and right endpoints. Illustrate with a graph.

$$
\Delta x=\frac{2-(-1)}{3}=1 \Rightarrow x_{1}=0, x_{2}=1,
$$

So

$$
\begin{aligned}
\text { Area } & =\Delta x\left[f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{3}\right)\right] \\
& =1[f(0)+f(1)+f(2)] \\
& =8+10+16 \\
& =34
\end{aligned}
$$


ii. Estimate the area under the graph of $f$ using three rectangles and midpoints $x_{1}=\frac{-1}{2}, x_{2}=\frac{1}{2}, x_{3}=3 / 2$.
So

$$
\begin{aligned}
\text { Area }=1[f(-1 / 2)+f(1 / 2)+f(3 / 2)] & =81 / 2+81 / 2+121 / 2 \\
& =29 \cdot 5
\end{aligned}
$$

(b) ( $1 \frac{1}{2} \mathrm{pts}$ ) Use the definition to find an expression for the area under the graph of $f$ as a limit. Do not evaluate the limit.

$$
\text { Area }=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \Delta x f\left(x_{i}\right)=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{3}{n} f\left(-1+\frac{3 i}{n}\right)=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{3}{n}\left[8+2\left(-1+\frac{3 i}{n}\right)^{2}\right]
$$

(c) (1 pts) Evaluate $\int_{-1}^{2}\left(8+2 x^{2}\right) d x$

$$
=8 x+\left.\frac{2 x^{3}}{3}\right|_{-1} ^{2}=\left[8(2)+\frac{2\left(2^{3}\right)}{3}\right]-\left[8(-1)+\frac{2(-1)^{3}}{3}\right] \text {. }
$$

$$
=\frac{64}{3}+\frac{26}{3}=\frac{90}{3}=30
$$

$T$ This is the prese area under $f(x)=8+2 x^{2}$ from $x=-1$ page $2 x=2$.

