\qquad

1. (a) i. (5 pts) Find the linear approximation, $L(x)$ of the function

$$
\begin{aligned}
& L(x)=\sqrt{x} \text { at } x=4 \\
& L(x)=f(4)+f^{\prime}(4)(x-4) \\
&=2+\frac{1}{4}(x-4) \\
&=\frac{1}{4} x+2-1 \\
&=\frac{1}{4} x+1
\end{aligned}\left\{\begin{array}{l}
f(x)=\sqrt{x}=x^{1 / 2} \\
\Rightarrow f^{\prime}(x)=\frac{1}{2} x^{-1 / 2}=\frac{1}{2 \sqrt{x}} \\
\text { So, } \\
f^{\prime}(4)=\frac{1}{2 \sqrt{4}}=\frac{1}{2(2)}=\frac{1}{4}
\end{array}\right.
$$

ii. (5 pts) Use $L(x)$ to approximate the number $\sqrt{3.9}$

Since $3.9 \approx 4$,

$$
\begin{aligned}
\sqrt{3.9} \approx L(3.9) & =\frac{1}{4}(3.9)+1 \\
& =0.975+1 \\
& =1.975
\end{aligned}
$$

(b) (7 pts) Find $\lim _{x \rightarrow \infty} x \sin \left(\frac{-9 \pi}{x}\right)$. Use l'Hospital's Rule if appropriate. If there is a more elementary method, consider using it.

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} x \sin \left(\frac{-9 \pi}{x}\right) \\
& =\lim _{x \rightarrow \infty} \frac{\sin \left(\frac{-9 \pi}{x}\right)}{\frac{1}{x}} \\
& =\lim _{y \rightarrow 0} \frac{\sin (-9 \pi y)}{y} \\
& =\lim _{y \rightarrow 0} \frac{\sin (-9 \pi y)}{-9 \pi y} \cdot(-9 \pi) \\
& =-9 \pi \lim _{y \rightarrow 0} \frac{\sin (-9 \pi y)}{-9 \pi y}=-9 \pi \\
& \text { (Alternatively, using l'Hospital's rule, } \\
& \left\{\begin{aligned}
\lim _{x \rightarrow \infty} x \sin \left(\frac{-9 \pi}{x}\right) & =\lim _{x \rightarrow \infty} \frac{\sin \left(\frac{-9 \pi}{x}\right)}{1 / x} \sim \frac{0}{0} \\
L^{\prime} H & \lim _{x \rightarrow \infty} \frac{\frac{9 \pi}{x^{2}} \cos \left(\frac{-9 \pi}{x}\right)}{-\frac{1}{x^{2}}}
\end{aligned}\right. \\
& =-9 \pi \lim _{x \rightarrow \infty} \cos \left(\frac{-9 \pi}{x}\right) \\
& =-9 \pi \cos (0) \\
& =-9 \pi
\end{aligned}
$$

2. (a) (7 pts) Find $\lim _{x \rightarrow 1} \frac{1-x^{2}}{\ln x}$. Use l'Hospital's Rule where appropriate. If there is a more elementary method, consider using it.

$$
\lim _{x \rightarrow 1} \frac{1-x^{2}}{\ln x}=\frac{0}{0}
$$

So,
(b) (7 pts) A street light is mounted at the top of a 15 -ft-tall pole. A man 6 ft tall walks away from the pole with a speed of $5 \mathrm{ft} / \mathrm{s}$ along a straight path. How fast is the tip of his shadow moving when he is 45 ft from the pole?

$$
\frac{d x}{d t}=5 \quad x=45
$$

By similar triangles,

$$
\begin{aligned}
\frac{y-x}{y} & =\frac{6}{15} \\
15(y-x) & =6 y \\
15 y-6 y & =15 x \\
9 y & =15 x \\
y & =\frac{5}{3} x \\
\Rightarrow \frac{d y}{d t} & =\frac{5}{3} \frac{d x}{d t} \\
& =\frac{5}{3}(5) \\
& =\frac{25}{3} \mathrm{ft} / \mathrm{s}
\end{aligned}
$$

So, the tip F his shadow is moving at a speed independent of his distance from the pole.
3. Let $f(x)=x^{3}-27 x+5 . \Rightarrow f^{\prime}(x)=3 x^{2}-27=3(x-3)(x+3), f^{\prime \prime}(x)=6 x$

(a) (3 pts) Find the intervals) where the function f is increasing

$$
(-\infty,-3),(3, \infty)
$$

(b) (3 pts) Find the interval(s) where f is decreasing

$$
(-3,3)
$$

(c) (3 pts) Find the intervals) where the graph of f is concave upward

$$
(0, \infty)
$$

(d) (3 pts) Find the intervals) where the graph of f is concave downward

$$
(-\infty, 0)
$$

(e) (3 pts) Find the local extrema points of f Local max: $(-3, f(-3))$; Local min: $(3, f(3))$
(f) (3 pts) Find the inflection points, if any, of f

$$
(0, f(0))
$$

(g) (3 pts) Find $\lim _{x \rightarrow \infty} f(x)$ and $\lim _{x \rightarrow-\infty} f(x)$
$\lim _{x \rightarrow \infty} \frac{\left(x^{3}-27 x+5\right)}{1}=\lim _{x \rightarrow \infty} \frac{x^{3}\left(1-\frac{27}{x^{2}}+\frac{5}{x^{3}}\right)}{x^{3}\left(1 / x^{3}\right)}=\lim _{x \rightarrow \infty} \frac{1-\frac{27}{x^{2}}+\frac{5}{x^{3}}}{1 / x^{3}}=\frac{1}{0}=\infty$.
$\lim _{x \rightarrow-\infty} \frac{\left(x^{3}-27 x+5\right)}{1}=\lim _{x \rightarrow-\infty} \frac{x^{3}\left(1-\frac{27}{x^{2}}+\frac{5}{x^{3}}\right)}{x^{3}\left(1 / x^{3}\right)}=\lim _{x \rightarrow-\infty} \frac{1-\frac{27}{x^{2}}+\frac{5}{x^{3}}}{1 / x^{3}}=\frac{1}{0^{-}}=-\infty$
(h) (6 pts) Evaluate f at some convenient points, and together with your results in (a) - (f), sketch the graph of f

$$
\begin{array}{rlrl}
f(-3)= & (-3)^{3}-27(-3)+5 & f(0) & =0^{3}-27(0)+5 \\
& =59 & & f(3)
\end{array}=3^{3}-27(3)+5 .
$$

4. (a) (5 pts) Does the function $f(x)=5 x^{2}-4 x+1,[0,2]$ satisfy the hypotheses of the Mean Value Theorem on the given interval?
i. Yes, it does not matter if f is continuous or differentiable, every function satisfies the Mean Value Theorem.
(ii) Yes, f is continuous on $[0,2]$ and differentiable on $(0,2)$ since polynomials are continuous and differentiable on \mathbb{R}.
iii. No, f is not continuous on $[0,2]$.
iv. No, f is continuous on $[0,2]$ but not differentiable on $(0,2)$.
v. There is not enough information to verify if this function satisfies the Mean Value Theorem.
(b) (5 pts) If it satisfies the hypotheses, find all numbers c that satisfy the conclusion of the Mean Value Theorem. If it does not satisfy the hypotheses, write DNE).

$$
\begin{aligned}
& f^{\prime}(c)=\frac{f(2)-f(0)}{2-0}=\frac{13-1}{2}=6 \\
& \Rightarrow 10 c-4=6 \\
& \Rightarrow \quad c=\frac{10}{10}=1
\end{aligned}
$$

(c) (5 pts) Find the intervals of concavity of the function $f(x)=\frac{x}{1+x^{2}}$ Using quotient vole,

$$
\begin{aligned}
f^{\prime}(x) & =\frac{\left(1+x^{2}\right) 1-x(2 x)}{\left(1+x^{2}\right)^{2}}=\frac{1-x^{2}}{\left(1+x^{2}\right)^{2}} \\
f^{\prime \prime}(x) & =\frac{\left(1+x^{2}\right)^{2}(-2 x)-\left(1-x^{2}\right) 2\left(1+x^{2}\right)(2 x)}{\left(1+x^{2}\right)^{4}} \\
& =\frac{\left(1+x^{2}\right)\left[-2 x-2 x^{3}-4 x+4 x^{3}\right]}{\left(1+x^{2}\right)^{4}} \\
& =\frac{\left(1+x^{2}\right)\left(2 x^{3}-6 x\right)}{\left(1+x^{2}\right)^{4}}=\frac{2 x(x-\sqrt{3})(x+\sqrt{3})}{\left(1+x^{2}\right)^{3}}
\end{aligned}
$$

Conc ave down on $(-\infty,-\sqrt{3}) \cup(0, \sqrt{3})$
Concave up on $(-\sqrt{3}, 0) \cup(\sqrt{3}, \infty)$
5. Consider the graph of a function, f below

(a) (3 pts) Find the intervals) where f is concave upward

$$
(0,2),(4,6),(7,12)
$$

(b) (3 pts) Find the interval(s) where f is concave downward

$$
(2,4),(6,7)
$$

(c) (3 pts) Find the intervals) where f is increasing

$$
(0,3),(5,9)
$$

(d) (3 pts) Find the intervals) where f is decreasing

$$
(3,5),(9,12)
$$

(e) (3 pts) Find the inflection point (s) of f

$$
(2, f(2)),(4, f(4)),(6, f(6)),(7, f(7))
$$

(f) (3 pts) Find the local minimum point (s) of f

$$
(5, f(5))
$$

(g) (3 pts) Find the local maximum point (s) of f

$$
(3, f(3)),(9, f(9))
$$

(h) (3 pts) Find the absolute maximum point of f

$$
(g, f(g))
$$

(i) (3 pts) Find the absolute minimum value of f

$$
f(0)=1=f(5)
$$

Scratch Work

