\qquad
\qquad

1. (a) (12 pts) Let $f(x)=5+x^{2}$ from $x=-1$ to $x=2$. Estimate the area under the graph of f using three rectangles and right endpoints. Illustrate with a graph.

$$
\begin{aligned}
& \Delta x=\frac{2-(-1)}{3}=1 ; x_{1}=-1+1=0 \\
& x_{2}=x_{1}+1=1, x_{3}=x_{2}+1=2 . \\
& \text { So } \\
& \text { Area } \approx \Delta x\left[f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{2}\right)\right] \\
&=1[f(0)+f(1)+f(2)] \\
&=\left(5+0^{2}\right)+\left(5+1^{2}\right)+\left(5+2^{2}\right) \\
&=5+6+9 \\
&=20
\end{aligned}
$$

(b) (12 pts) Express the integral as a limit of Riemann sums. Do not evaluate the limit. (Use the right endpoints of each subinterval as your sample points.)

$$
\begin{aligned}
& \quad \int_{7}^{9}\left(x^{2}+\sqrt{1+2 x}\right) d x \\
& \Delta x=\frac{9-7}{n}=\frac{2}{n} ; x_{i}=7+i \Delta x=7+\frac{2 i}{n} \\
& S_{0}, \\
& \int_{7}^{9}\left(x^{2}+\sqrt{1+2 x}\right) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left[\left(7+\frac{2 i}{n}\right)^{2}+\sqrt{1+2\left(7+\frac{2 i}{n}\right)}\right]
\end{aligned}
$$

2. (a) (13 pts) Find the most general antiderivative of the function. (Check your answer by differentiation. Use C for the constant of the antiderivative.) $f(x)=7 x^{\frac{2}{5}}+6 x^{-\frac{4}{5}}+\sqrt[7]{x^{2}}$

$$
=7 x^{2 / 5}+6 x^{-4 / 5}+x^{2 / 7}
$$

So

$$
\begin{aligned}
F(x) & =\int\left(7 x^{2 / 5}+6 x^{-4 / 5}+x^{2 / 7}\right) d x \\
& =\frac{7 x^{\frac{2}{5}+1}}{\frac{2}{5}+1}+\frac{6 x^{\frac{4}{5}+1}}{\frac{-4}{5}+1}+\frac{x^{\frac{2}{7}+1}}{\frac{2}{7}+1}+C \\
& =5 x^{7 / 5}+30 x^{1 / 5}+\frac{7}{9} x^{\frac{9}{7}}+C
\end{aligned}
$$

(b) (13 pts) A particle is moving with the given data:

$$
a(t)=t^{2}+4 t+3, \quad s(0)=0, \quad s(1)=3
$$

Find the position of the particle at time, t.

$$
\begin{aligned}
v(t)=\int a(t) d t & =\int\left(t^{2}+4 t+3\right) d t=\frac{t^{3}}{3}+2 t^{2}+3 t+c \\
S(t)=\int v(t) d t & =\int\left(\frac{t^{3}}{3}+2 t^{2}+3 t+c\right) d t \\
& =\frac{t^{4}}{12}+\frac{2}{3} t^{3}+\frac{3}{2} t^{2}+C t+D
\end{aligned}
$$

Thus,

$$
\begin{aligned}
S(0) & =D=0 \quad \text { and } \quad \text { So } \\
S(1) & =\frac{1}{12}+\frac{2}{3}+\frac{3}{2}+C=3 \\
& \Rightarrow C=3-\frac{27}{12}=\frac{9}{12}=\frac{3}{4}
\end{aligned}
$$

Hence, the position of the particle at time, t is

$$
S(t)=\frac{t^{4}}{12}+\frac{2}{3} t^{3}+\frac{3}{2} t^{2}+\frac{3}{4} t
$$

3. A box with an open top is to be constructed from a square piece of cardboard, 3 ft wide, by cutting out a square from each of the four corners and bending up the sides. Find the largest volume that such a box can have.
(a) (3 pts) Draw a diagram illustrating the general situation. Let x denote the length of the side of the square being cut out. Let y denote the length of the base.

(b) (3 pts) Write an expression for the volume V in terms of both x and y.

$$
\begin{aligned}
V & =l w h \\
& =y \cdot y \cdot x \\
& =x y^{2}
\end{aligned}
$$

(c) (3 pts) Use the given information to write an equation that relates the variables x and y.
A side of the cardboard is 3ft. So,

$$
\begin{aligned}
& x+y+x=3 \\
& \Rightarrow y=3-2 x
\end{aligned}
$$

(d) (3 pts) Use part (d) to write the volume as a function of only x.

$$
\begin{aligned}
V(x) & =x y^{2} \\
& =x(3-2 x)^{2}=x\left(9-12 x+4 x^{2}\right) \\
& =4 x^{3}-12 x^{2}+9 x
\end{aligned}
$$

(e) (3 pts) Finish solving the problem by finding the largest volume that such a box can have.

$$
\begin{aligned}
& v^{\prime}(x)=12 x^{2}-24 x+9=0 \Rightarrow 3(2 x-1)(2 x-3)=0 \\
& \Rightarrow x=1 / 2,3 / 2 \\
& V^{\prime \prime}(x)=24 x-24 \Rightarrow v^{\prime \prime}(1 / 2)=24\left(\frac{1}{2}\right)-24=-12<0 \text { and } v^{\prime \prime}\left(\frac{3}{2}\right)=24\left(\frac{3}{2}\right)-24>0 \\
& \text { Also, } v(0)=0, v(1 / 2)=4\left(\frac{1}{2}\right)^{3}-12\left(\frac{1}{2}\right)^{2}+9\left(\frac{1}{2}\right)=\frac{1}{2}-3+\frac{9}{2}=2
\end{aligned}
$$

$$
v(3 / 2)=0 \text {. Hence, the largest possible volume is } 2 \mathrm{ft}^{3} \text { page } 3
$$

4. (a) (13 pts) Evaluate the integral.

$$
\begin{aligned}
\int_{0}^{1}(x+2) \sqrt{4 x+x^{2}} d x & =\int_{0}^{1}(x+2) \sqrt{4 x+x^{2}} d x \\
& =\frac{1}{2} \int_{0}^{5} u^{1 / 2} d u \\
& =\left.\frac{1}{3} u^{3 / 2}\right|_{0} ^{5 / 2} \cdot \frac{1}{2(2+x)} d u \\
& =\frac{1}{3}\left(5^{3 / 2}-0^{3 / 2}\right) \\
& =\frac{1}{3} \sqrt{125}
\end{aligned}
$$

$$
\text { let } u=4 x+x^{2}
$$

$$
\frac{d u}{d x}=4+2 x
$$

(b) (12 pts) Find the derivative of the function

$$
F(x)=\int_{2}^{x^{2}}\left(e^{t^{2}}+t\right) d t
$$

Let $u=x^{2}$. Then by contirinity of $f(t)=e^{t^{2}}+t$ and chain rule,

$$
F^{\prime}(x)=\frac{d}{d u} \int_{2}^{u}\left(e^{t^{2}}+t\right) d t \cdot \frac{d}{d x}\left(x^{2}\right)
$$

$=f(u) 2 x$

$$
=2 x\left(e^{\left(x^{2}\right)^{2}}+x^{2}\right)
$$

$$
=2 x\left(e^{x^{4}}+x^{2}\right)
$$

(c) (10 pts) What is wrong with the equation? (FTC is the Fundamental Theorem of Calculus)

$$
\int_{-1}^{4} x^{-3} d x=\left.\frac{x^{-2}}{-2}\right|_{-1} ^{4}=\frac{15}{32}
$$

i. There is nothing wrong with the equation.
ii. $f(x)=x^{-3}$ is not continuous at $x=-1$, so FTC cannot be applied
iii. $f(x)=x^{-3}$ is not continuous on the interval $[-1,4]$ so FTC cannot be applied
iv. The lower limit is less than 0 , so FTC cannot be applied
v. $f(x)=x^{-3}$ is continuous on the interval $[-1,4]$ so FTC cannot be applied

Scratch Work

