1620 1/13 Recitation

1. Evaluate $\int \ln 2 \frac{e^{2 x}}{e^{2 x}-1} d x$.
2. Evaluate $\int_{\frac{1}{2}}^{1} 8 x^{-2}\left(1+\frac{1}{x}\right)^{-3} d x$.
3. Sketch a curve of $y=f(x)$ where:
(a) f is continuous everywhere
(b) $f^{\prime}(x)>0$ on $(-\infty, 1), f^{\prime}(x)<0$ on $(1, \infty)$, and $f^{\prime}(1)=0$
(c) $f^{\prime \prime}(x)>0$ on $(-\infty,-2) \cup(2, \infty), f^{\prime \prime}(x)<0$ on $(-2,2)$
(d) $\lim _{x \rightarrow-\infty} f(x)=-\infty, \lim _{x \rightarrow \infty} f(x)=1$
(e) $f(-3)=-2, f(1)=2$
4. Let $g(x)=\int_{\sqrt{x}}^{1} \cos \left(t^{2}\right) d t$ be defined on $(0,2 \pi)$. Find the intervals of increasing and decreasing of g.
5. If $f(x)=10+\int_{9}^{x^{2}} \sin \left(\frac{\pi \sqrt{t}}{2}\right) d t$, what is $f(3)$ and $f^{\prime}(3)$?
6. A terabyte of data contains 2^{40} bytes. Use linearization to approximate 2^{40} without a calculator. (Hint: Use $f(x)=x^{4}$ and that $2^{10}=1024$.)
7. Express $\int_{1}^{4}\left(x^{2}-4 x+2\right) d x$ as a limit of Reimann sums, and then evaluate the limit. (Hint: Recall that $\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}$ and $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$.)
8. $\int_{a}^{b} f(x) d x$ can be interpreted as the net area contained between f and the x-axis for $a \leq x \leq b$. How would you interpret $\int_{c}^{d} f(y) d y$? Use this interpretation to determine the area of the region below where the curve is given by $x=\sec ^{2} y \tan ^{3} y$.

