1620 3/5 Recitation Key

1. Find the surface area of the solid made by rotating the curve $y=\frac{\sqrt{3}}{4} \sqrt{16-4 x^{2}}$ from $-2 \leq x \leq 2$ about the x-axis.
$y^{\prime}=-\frac{\sqrt{3} x}{\sqrt{16-4 x^{2}}}$ so $1+y^{\prime 2}=\frac{16-x^{2}}{16-4 x^{2}}$. Since we are revolving about the $x-$ axis, our radius is the y value of our curve, so the surface area is

$$
\begin{array}{rlrl}
\int_{-2}^{2} 2 \pi \frac{\sqrt{3}}{4} \sqrt{16-4 x^{2}} \sqrt{\frac{16-x^{2}}{16-4 x^{2}}} d x & =\frac{\sqrt{3}}{2} \pi \int \sqrt{16-x^{2}} d x & \\
& =\frac{\sqrt{3}}{2} \pi \int_{-\frac{\pi}{6}}^{\frac{\pi}{6}} 4 \cos u \sqrt{16-16 \sin ^{2} u} d u & x=4 \sin u \\
& =8 \sqrt{3} \pi \int_{\cos ^{2} u d u} & & \text { Pythagorean } \\
& =4 \sqrt{3} \pi \int \cos (2 u)+1 d y & \text { HA } \\
& =\left.4 \sqrt{3} \pi\left(\frac{1}{2} \sin (2 u)+u\right)\right|_{-\frac{\pi}{6}} ^{\frac{\pi}{6}} & \\
& =6 \pi+\frac{4}{\sqrt{3}} \pi^{2} &
\end{array}
$$

2. Consider the region in the first quadrant bounded by $y=2 x$ and $y=x^{3}$. Set up an integral for the volume of the solid generated by revolving this region about $x=2$ (a) using the disk method (b) using the shell method.

Note that $2 x=x^{3}$ when $x=0, \pm \sqrt{2}$, and since are we in the first quadrant, our intersection points are $(0,0)$ and $(\sqrt{2}, 2 \sqrt{2})$. For the disk method, we use washers in terms of y so $r_{O}=2-\frac{1}{2} y$ and $r_{I}=2-\sqrt[3]{y}$. Thus, the volume is $\int_{0}^{2 \sqrt{2}} \pi\left(\left(2-\frac{1}{2} y\right)^{2}-(2-\sqrt[3]{y})^{2}\right) d y$. For the shell method, $r=2-x$ and $h=2 x-x^{3}$ so the volume is $\int_{0}^{2} 2 \pi(2-x)\left(2 x-x^{3}\right) d x$.
3. Find the length of the curve $y=\left(\frac{x}{2}\right)^{\frac{3}{2}}$ on $0 \leq x \leq 32$. Compare this arc length to the length of the line segment from $(0, f(0))$ to $(32, f(32))$. Which is longer, and does this answer make sense? (b) What is the average value of f over this interval? Must $f(x)$ necessarily equal its average value for some $0 \leq x \leq 32$? Why or why not?
$f^{\prime}(x)=\frac{3}{4}\left(\frac{x}{2}\right)^{\frac{1}{2}}$ so the arc length is $\int_{0}^{32} \sqrt{1+\frac{9 x}{32}} d x=\frac{64}{27}(10 \sqrt{10}-1) \approx 72$. The length of the line segment is $\sqrt{32^{2}+16^{3}}=32 \sqrt{5} \approx 71$, which makes sense since a line is the shortest distance between two points.
$f_{\text {ave }}=\frac{1}{32} \int_{0}^{3} 2\left(\frac{x}{2}\right)^{\frac{3}{2}} d x=\frac{128}{5}$. Since f is continuous everywhere, the MVT for integrals ensures that there is some value $c \in(0,32)$ where $f(c)=f_{\text {ave }}$.
4. Set up an integral to find the surface area of the solid generated by revolving the curve $y=\sqrt{9-x^{2}}-4$ about the x-axis.
$y^{\prime}=-\frac{x}{\sqrt{9-x^{2}}}$ so $1+y^{\prime}=\frac{9}{9-x^{2}}$. Since we are rotating about $y=0$, our radius is the y value of the curve. Thus, the surface area is $\int_{-3}^{3} 2 \pi\left(\left(\sqrt{9-x^{2}}-4\right)\left(\frac{9}{9-x^{2}}\right) d x\right.$.
5. Consider the region bounded by $y=\sin x \cos x$ and $y=0$ from $0 \leq x \leq \frac{\pi}{2}$. Set up an integral for the volume of the solid generated by rotating about (a) the x-axis (b) $y=2$ (c) the y-axis (d) the surface area of the solid from part (a).
(a) Disk with $r=\sin x \cos x$ so $V=\int_{0}^{\frac{\pi}{2}} \pi \sin ^{2} x \cos ^{2} x d x$.
(b) Washer wit $r_{O}=2$ and $r_{I}=2-\sin x \cos x$ so $V=\int_{0}^{\frac{\pi}{2}} \pi\left(4-(2-\sin x \cos x)^{2} d x\right.$.
(c) Shell with $r=x$ and $h=\sin x \cos x$ so $V=\int_{0}^{\frac{\pi}{2}} 2 \pi x \sin x \cos x d x$..
(d) $y^{\prime}=\cos ^{2} x-\sin ^{2} x$ so $1+y^{\prime 2}=1+\cos ^{4} x+\sin ^{4} x-2 \sin ^{2} x \cos ^{2} x$. Thus, the surface area is $A=2 \pi \int_{0}^{\frac{\pi}{2}} \sin x \cos x \sqrt{1+\cos ^{4} x+\sin ^{4} x-2 \sin ^{2} x \cos ^{2} x} d x$.
6. Let $f(x)=\frac{e^{x}+e^{-x}}{2}$. (a) Find the exact length of the curve $y=f(x)$ on $-1 \leq x \leq 1$. (b) The surface area of the solid made by rotating the curve about the y-axis. $f^{\prime}(x)=\frac{e^{x}-e^{-x}}{2}$ so the arc length is $\int_{-1}^{1} \sqrt{1+\frac{e^{2 x+e^{-2 x}}}{4}-\frac{1}{2}} d x$.

$$
\begin{array}{rlr}
\int_{-1}^{1} \sqrt{1+\frac{e^{2 x}+e^{-2 x}}{4}-\frac{1}{2}} d x & =\frac{1}{2} \int_{-1}^{1} \sqrt{e^{2 x}+e^{-2 x}+2} d x \\
& =-\frac{1}{4} \sqrt{e^{u}+e^{-u}+2} d u \\
& =-\frac{1}{4} \int e^{-\frac{u}{2}}\left(e^{u}+1\right) d u & \\
& =\frac{1}{2} \int\left(e^{-2 v}+1\right) e^{v} d x \\
& =\frac{1}{2} \int e^{v}+e^{-v} d v \\
& =\left.\frac{e^{x}-e^{-x}}{2}\right|_{-1} ^{1} \\
& =e-\frac{1}{e} & v=-\frac{u}{2}
\end{array}
$$

The surface area of a solid rotated about the x-axis is given by $2 \pi \int y d s$ where $d s$ is the expression we integrate for arc length. $\int_{-1}^{1} \pi\left(e^{x}+e^{-x}\right) \sqrt{\frac{1}{2}+\frac{e^{2 x}+e^{-2 x}}{4}} d x$.
7. Find the total area bounded between $y=\sin x$ and $y=\cos x$ on $-\pi \leq x \leq \pi$.
$\sin x=\cos x$ at $x=-\frac{3 \pi}{4}, \frac{\pi}{4}$ in our given interval. Splitting our area into 3 regions gives us that the total area is equal to $\int_{-\pi}^{-\frac{3 \pi}{4}} \sin x-\cos x d x+\int_{-\frac{3 \pi}{4}}^{\frac{\pi}{4}} \cos x-\sin x d x+\int_{\frac{\pi}{4}}^{\pi} \sin x-$ $\cos x d x=4 \sqrt{2}$.
8. Let $f(x)=\int_{1}^{x} \sqrt{t^{4}-1} d t$ for $x \geq 1$.
9. Find the exact length of the curve $y=f(x)$ over $1 \leq x \leq 3$. What is the surface area generated by rotating the curve about the y-axis?
By the FTC, $f^{\prime}(x)=\sqrt{x^{4}-1}$ so the arc length is $\int_{1}^{3} \sqrt{x^{4}} d x=\left.\frac{1}{3} x^{3}\right|_{1} ^{3}=\frac{26}{3}$.
$\left.2 \pi \int_{1}^{3} x^{3} d x=\frac{\pi}{2} x^{4} \right\rvert\, 1^{3}=40 \pi$.
10. Consider the region bounded by $y=\sqrt{x}$ and $y=1$. (a) What is the area of this region? (b) What is the volume of the solid generated by rotating this region about the line $x=-12$?
(a) The area is $\int_{0}^{1} 1-\sqrt{x} d x=\frac{1}{3}$.
(b) Using shells, the volume is $2 \pi \int_{0}^{1}(12+x)(1-\sqrt{x}) d x=\frac{10}{3}$.
11. Find the arc length function $s(x)$ for the curve $y=\frac{\left(x^{2}+2\right)^{\frac{3}{2}}}{3}$ with starting point $\left(0, \frac{2 \sqrt{2}}{3}\right)$. $\frac{d y}{d x}=x\left(x^{2}+2\right)^{\frac{1}{2}} . s(x)=\int_{0}^{x} \sqrt{1+x^{4}+2 x^{2}} d x$.
12. Consider the region bounded by $y=x-x^{3}, y=x^{2}-x$, and $x \geq 0$. (a) What is the area of the region? (b) Set up an integral for the volume of the solid generated by rotating the region about $y=3$. (c) Repeat (b) with the y-axis.
(a) $x-x^{3}=x^{2}-x$ at $x=-2,0,1$ so our intersection points are $(0,0)$ and $(1,0)$. In the interval $0 \leq x \leq 1, x-x^{3}>x^{2}-x$ so the area of the region is $\int_{0}^{1} x-x^{3}+x-x^{2} d x=\frac{5}{12}$.
(b) Using washers, $r_{O}=3-x^{2}+x$ and $r_{I}=3-x+x^{3}$ so the volume is $\int_{0}^{1} \pi\left(\left(3-x^{2}+\right.\right.$ $\left.x)^{2}-\left(3-x+x^{3}\right)^{2}\right) d x$.
(c) Using shells, $r=x$ and $h=-x^{3}-x^{2}+2 x$ so the volume is $\int_{0}^{1} 2 \pi x\left(-x^{3}-x^{2}+2 x\right) d x$.
13. Find the length of the curve $y=\ln \sec x$ from $0 \leq x \leq \frac{\pi}{4}$.
$y^{\prime}=\tan x$ so $1+y^{\prime 2}=1+\tan ^{2} x=\sec ^{2} x$. Thus, $\left.L=\int_{0}^{\frac{\pi}{4}} \sqrt{1+\tan ^{2} x} d x=\ln \right\rvert\, \sec x+$ $\tan x\left|\left.\right|_{0} ^{\frac{\pi}{4}}=\ln (\sqrt{2}+1)\right.$.
14. Find the length of the curve $y=e^{2 x}$ from $0 \leq x \leq 1$. $y^{\prime}=2 e^{2 x}$ so $1+y^{\prime 2}=1+\left(2 e^{2 x}\right)$. Then

$$
\begin{array}{rlrl}
\int_{0}^{1} \sqrt{1+\left(2 e^{2 x}\right)^{2}} d x & =\frac{1}{2} \int \sqrt{1+\tan ^{2} \theta} \sec ^{2} \theta \cot \theta d \theta & & \tan \theta=2 e^{2 x} \\
& =\frac{1}{2} \int \sec ^{3} \theta \cot \theta d \theta & & \text { Pythagorean } \\
& =\frac{1}{2} \int \sec \theta \tan \theta+\csc \theta d \theta & & \text { Pythagorean } \\
& =\frac{1}{2}(\sec \theta-\ln |\csc \theta+\cot \theta|) & \\
& =\left.\frac{1}{2}\left(\left(1+\left(2 e^{2 x}\right)^{2}\right)-\ln \left|\frac{1+\left(2 e^{2 x}\right)^{2}}{2 e^{2 x}}+\frac{1}{2 e^{2 x}}\right|\right)\right|_{0} ^{1} & \\
& =\frac{1}{2}\left(-4+4 e^{4}+\ln 3-\ln \left(\frac{2 e^{4}+1}{e^{2}}\right)\right) &
\end{array}
$$

15. A length of string, chain, etc., which is hanging by both ends is called a catenary. Mathematically, a catenary is described by $f(x)=a^{\frac{e^{\frac{x}{a}}}{a}+e^{-\frac{x}{a}}} 2$ with $a>0$. What is the length of a catenary with its ends fixed at $(1,1)$ and $(-1,1)$?
$f^{\prime}(x)=\frac{e^{\frac{x}{a}}-e^{-\frac{x}{a}}}{2}$ and $1+f^{\prime}(x)^{2}=\frac{e^{\frac{2 x}{a}}+e^{-\frac{2 x}{a}}}{4}+\frac{1}{2}=\left(\frac{e^{\frac{x}{a}}}{2}+\frac{e^{-\frac{x}{a}}}{2}\right)^{2}$. Thus, the arc length is $\int_{-1}^{1} \sqrt{\left(\frac{e^{\frac{x}{a}}}{2}+\frac{e^{-\frac{x}{a}}}{2}\right)^{2}} d x=\int_{-1}^{1} \frac{e^{\frac{x}{a}}}{2}+\frac{e^{-\frac{x}{a}}}{2} d x=\left.\frac{a}{2}\left(e^{\frac{x}{a}}-e^{-\frac{x}{a}}\right)\right|_{-1} ^{1}=a e^{-\frac{1}{a}}\left(e^{\frac{2}{a}}-1\right)$.
16. Sketch the asteroid given by $x^{\frac{2}{3}}+y^{\frac{2}{3}}=1$ and find the perimeter of the asteroid.

Since the shape is symmetric with respect to the origin, we can take the arc length of a piece of the curve in one quadrant, and quadruple this for the total arc length. The piece of the curve in quadrant 1 is given by $f(x)=\left(1-x^{\frac{2}{3}}\right)^{\frac{3}{2}}$ so $f^{\prime}(x)=-\sqrt{\frac{1-x^{\frac{2}{3}}}{x^{\frac{1}{3}}}}$ and $1+f^{\prime}(x)^{2}=\frac{1}{x^{\frac{2}{3}}}$. Thus, the arc length of this curve is $\int_{0}^{1} \frac{1}{x^{\frac{1}{3}}} d x=\frac{3}{2}$ so the perimeter is 6 .
17. Let $f(x)=\cos ^{-1}\left(e^{x}\right)$ on $(-\infty, 0]$. Set up 2 integrals, one with respect to x and the other y, to find the arc length of $y=f(x)$ on $-\frac{\ln 2}{2} \leq x \leq 0$, and then compute the integral of your choice.
$f^{\prime}(x)=-\frac{e^{x}}{\sqrt{1-e^{2 x}}}$ so $1+f^{\prime}(x)^{2}=\frac{1}{1-e^{2 x}}$. Thus, the arc length is

$$
\begin{aligned}
\int_{-\frac{\ln 2}{2}}^{0} \sqrt{\frac{1}{1-e^{2 x}}} d x & =\int_{\frac{p i}{4}}^{\frac{\pi}{2}} \frac{\cot \theta}{\sqrt{1-\sin ^{2} \theta}} d \theta \quad \sin \theta=e^{x} \\
& =\int \cot \theta d \theta \\
& =-\left.\ln |\csc \theta+\tan \theta|\right|_{\frac{\pi}{4}} ^{\frac{\pi}{2}} \\
& =\ln (1+\sqrt{2})
\end{aligned}
$$

Likewise, if $y=\cos ^{-1}\left(e^{x}\right)$ then $x=\ln (\cos y)$ so $x^{\prime}=-\tan y$ and $1+x^{\prime 2}=1+\tan ^{2} y=$ $\sec ^{2} y$. Thus, the arc length is

$$
\begin{aligned}
\int_{\frac{\pi}{4}}^{0} \sqrt{\sec ^{2} y} d y & =-\int_{0}^{\frac{\pi}{4}} \sec y d y \\
& =-\left.\ln |\sec y+\tan y|\right|_{0} ^{\frac{\pi}{4}} \\
& =\ln (1+\sqrt{2})
\end{aligned}
$$

18. Assume a spring at res is 7 ft long. If 25 ft -lbs of work is required to hold the spring at a length of 10 ft , how much work is required to stretch the spring from 9 to 11 ft ?
We have that $25=\int_{0}^{3} k x d x$ by Hooke's Law. Integrating and solving for k gives that $k=\frac{50}{9}$. We then evaluate $\int_{2}^{4} \frac{50}{9} x d x=\frac{100}{3}$.
19. Ants excavate a chamber that is underground that is described as follows: Let S be the region of the fourth quadrant enclosed by $y=-\sqrt{x}, y=-1$, and the y-axis; revolve S about the y-axis. (a) Set up and simplify an integral for the volume of the chamber. (b) Suppose the chamber contained soil weighing $50 \mathrm{lb} / \mathrm{ft}^{3}$. How much work did the ants do in raising the soil to ground level?
(a) We use disks with a radius of y^{2} so the volume is $\pi \int_{-1}^{0} y^{4} d y=\frac{\pi}{5}$.
(b) Using the same setup from (a), a slice of soil has area πy^{4} and a height of Δy so the force on the slice is $50 \pi y^{4} \Delta y$. Thus, the work to move the slice y feet is $50 \pi y^{5} \Delta y$. Hence, the total work is $\int_{0}^{1} 50 \pi y^{5} d y=\frac{25 \pi}{3}$.
20. A 5 lb bucket containing 10 lb of water is hanging at the end of a 300 ft rope which weighs 15 lbs . The other end of the rope is attached to a pulley. The rope is wound onto the pulley at a rate of $3 \mathrm{ft} / \mathrm{s}$, causing the bucket to be lifted. Find the work done in lifting the bucket 200 ft if the water leaks out of the bucket at a rate of $1 / 4 \mathrm{lb} / \mathrm{s}$.
At a height of $x \mathrm{ft}$, the force on the rope is $\frac{1}{20}(300-x)$ and the force on the water is $10-\frac{1}{12} x$. Adding in the force on the bucket, the total force at x is $30-\frac{2}{15} x$ so the total work is $\int_{0}^{200} 30-\frac{2}{15} x d x=\frac{10000}{3}$.
