Questions for recitation 31 March 2021

1. Consider the alternating p -series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{p}}
$$

For what values of $p \in \mathbb{R}$ is this infinite series divergent, conditionally convergent, or absolutely convergent?

Solution:

$$
\sum a_{n}\left\{\begin{array}{l}
\text { absolutely converges for } p>1 \text { by p-series } \\
\text { conditionally converges for } 0<p \leq 1 \text { by AST } \\
\text { diverges for } p \leq 0 \text { by test for divergence }
\end{array}\right.
$$

2. Determine if each of the series below converges (absolutely/conditionally) or diverges. If possible, for each convergent series, determine the sum of the series. Be sure to fully motivate your answers.
(a) $\sum_{n=3}^{\infty} \frac{\ln n}{\ln (\ln n)}$
(e) $\sum_{n=1}^{\infty} \frac{(-1)^{n+2 n}}{(\arctan (n))^{n}}$
(b) $\sum_{n=1}^{\infty} \frac{2^{n} 3^{n}}{n^{n}}$
(f) $\sum_{n=1}^{\infty} \frac{\ln \left(n^{2}\right) 3^{n} n!}{n^{n}}$
(c) $\sum_{n=1}^{\infty} \frac{(2 n)!}{n!n!}$
(g) $\sum_{n=1}^{\infty} \frac{\sin (n)}{n^{2}}$
(d) $\sum_{n=1}^{\infty} \frac{n!n!}{(2 n)!}$

Solution:

(a) $n>\ln (n) \Longrightarrow \ln (n)>\ln (\ln (n))$, so this diverges by the test for divergence.
(b) The root test is an excellent choice when n is in exponents: $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\lim _{n \rightarrow \infty} \frac{6}{n} \rightarrow 0$, so this converges absolutely.
(c) The ratio test is an excellent choice when n appears in factorials:

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(2 n+2)!}{2 n!} \| \frac{n!n!}{(n+1)!(n+1)!}\right|=\lim _{n \rightarrow \infty} \frac{(2 n+1)(2 n+2)}{(n+1)(n+1)} \rightarrow 4
$$

so this diverges.
(d) By an identical ratio test to (c), $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| \rightarrow \frac{1}{4}$ which implies absolute convergence.
(e) Root test: $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\lim _{n \rightarrow \infty} \frac{1}{\tan ^{-1}(n)}=\frac{2}{\pi}$, so this converges absolutely.
(f) Ratio test, (already grouping terms):
$\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{\ln (n+1)^{2}}{\ln \left(n^{2}\right)} \frac{3^{n+1}}{3^{n}} \frac{(n+1)!}{n!} \frac{n^{n}}{(n+1)^{n+1}}=\lim _{n \rightarrow \infty} 1 \cdot 3 \cdot \frac{n+1}{n+1}\left(\frac{n}{n+1}\right)^{n} \rightarrow \frac{3}{e}>1$
So (whew!) this diverges by the ratio test. The $n \cdot e$ coming from the ratio test on n^{n} is something to keep in mind.
(g) Importantly, note that this does not satisfy the criteria of the alternating series test. However, noting that $0 \leq\left|a_{n}\right| \leq \frac{1}{n^{2}}$, this converges absolutely by direct comparison.
3. Do the following series converge or diverge? If they converge, is it conditional or absolute?
(a) $\sum_{n=1}^{\infty}(-1)^{n+1}\left(\frac{1+n}{n^{2}}\right)$
(d) $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{\cos (n \pi)}{n^{4 / 5}}$
(b) $\sum_{n=1}^{\infty}(-1)^{n+1}\left(\frac{\ln (n)}{\ln \left(n^{2}\right)}\right)^{2 n}$
(e) $\sum_{n=1}^{\infty} \frac{n^{n}}{5^{n}}$
(c) $\sum_{n=1}^{\infty} \frac{\cos (n \pi)}{n^{4 / 5}}$

Solution:

a) $\sum\left|a_{n}\right|=\sum \frac{1+n}{n^{2}}$, which diverges by limit comparison to $b_{n}=\frac{1}{n}$, so $\sum a_{n}$ does not converge absolutely. However, the series is alternating, and $\left|a_{n}\right|$ is decreasing, $\left|a_{n}\right| \rightarrow 0$, so $\sum a_{n}$ converges by the alternating series test. Since this converge is not absolute, it is conditional.
b)

$$
\sum_{n=1}^{\infty}(-1)^{n+1}\left(\frac{\ln (n)}{\ln \left(n^{2}\right)}\right)^{2 n}=\sum_{n=1}^{\infty}(-1)^{n+1}\left(\frac{1}{2}\right)^{2 n}=\sum_{n=1}^{\infty}-\left(\frac{-1}{4}\right)^{n} \stackrel{\text { geo }}{=} \frac{1 / 4}{1+(1 / 4)}=1 / 5
$$

This series converges absolutely.
c) $\sum_{n=1}^{\infty} \frac{\cos (n \pi)}{n^{4 / 5}}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{4 / 5}}$ which has the same behavior as the series in part a (converges by alternating series, but the convergence is not absolute by p-series).
d) $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{(-1)^{n}}{n^{4 / 5}}=\sum_{n=1}^{\infty} \frac{-1}{n^{4 / 5}}$. This series diverges by the p-test $(p=4 / 5<1)$.
e) By the root test, $\left|a_{n}\right|^{1 / n}=\frac{n}{5} \rightarrow \infty$, so this diverges. (Equivalently, the test for divergence works, as $a_{n}>1$ for $n>5$.)
4. State a criteria under which

$$
\sum_{j=1}^{\infty}\left(\sum_{i=0}^{\infty} a x^{i}\right)^{j}
$$

converges.
Solution: The inner sum is geometric, so:

$$
\sum_{j=1}^{\infty}\left(\sum_{i=0}^{\infty} a x^{i}\right)^{j}=\sum_{j=1}^{\infty}\left(\frac{a}{1-x}\right)^{j}
$$

if $|x|<1$. But this outer sum is geometric too - and it will converge to

$$
\frac{\frac{a}{1-x}}{1-\left(\frac{a}{1-x}\right)}
$$

as long as $\left|\frac{a}{1-x}\right|<1$. This is our second condition for convergence (with $|x|<1$).

