Questions for recitation 26 March 2021

1. Does the following series converge? Why or why not? If it does converge, for what value of m will the m th sum be within .001 of the infinite sum? $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{3 n}$ Solution: This converges by the A.S.T., and $\left|a_{n}\right|<.001$ when $\frac{1}{3 n}<.001 \Longrightarrow n>334$. So we need the 333 rd partial sum.
2. Which of the following alternating series converge and which diverge? Be sure to fully support your answer.
(a) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$
(b) $\sum_{n=1}^{\infty}(-1)^{n} \frac{10^{n}}{n^{10}}$
(c) $\sum_{n=2}^{\infty} \frac{(-1)^{n+1}}{\ln (n)}$
(d) $\sum_{n=2}^{\infty}(-1)^{n+1} \frac{\ln (n)}{\ln \left(n^{2}\right)}$
(e) $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{\sqrt{n}+1}{n+1}$
(f) $\sum_{n=1}^{\infty} n^{\frac{-1}{10}} \cos (n \pi)$

Solution:

(a) Converges by alternating series theorem.
(b) Diverges by test for divergence and 10 applications of L'Hospital's rule.
(c) Converges by alternating series theorem.
(d) Terms simplify to $(-1)^{n+1} \frac{1}{2} \neq 0$. Series diverges by test for divergence.
(e) Converges by alternating series theorem.
(f) Observe that $\cos (n \pi)=(-1)^{n}$ for integer n. Converges by alternating series theorem.
3. Find an example of a divergent alternating series $\sum a_{k}$ for which $\lim _{k \rightarrow \infty} a_{k}=0$.

Solution: We are missing the requirement for the alternating series test that $\left|a_{n}\right|$ decreasing. So an example that violates this is e.g.

$$
a_{n}= \begin{cases}\frac{1}{n} & n \text { odd } \\ \frac{-1}{n^{2}} & n \text { even }\end{cases}
$$

