Questions for recitation 3 March 2021

1. Let $f(x)=\left(\frac{x}{2}\right)^{3 / 2}$.
(a) Find the exact length of the curve $y=f(x)$ on $0 \leq x \leq 32$. Compare this arc length to the length of the line segment connecting $(0, f(0))$ and $(32, f(32))$. Which is longer? Does this answer make sense?
(b) What is the average value of f over this interval? Must $f(x)$ necessarily equal its average value for some $0 \leq x \leq 32$? Why or why not?
2. Consider the function $f(x)=\cosh (x)=\frac{e^{x}+e^{-x}}{2}$.
(a) Find the exact length of the curve $y=f(x)$ on $-1 \leq x \leq 1$.
3. Let $f(x)=\int_{1}^{x} \sqrt{t^{4}-1} d t$, for $x \geq 1$.
(a) Find the exact length of the curve $y=f(x)$ over $1 \leq x \leq 3$
4. Find the arc length function $s(x)$ for the curve $y=\frac{\left(x^{2}+2\right)^{3 / 2}}{3}$, with starting point $\left(0, \frac{2 \sqrt{2}}{3}\right)$
5. Find the exact length of the curve $y=\ln (\sec x), 0 \leq x \leq \pi / 4$
6. Find the exact length of the curve $y=e^{2 x}, 0 \leq x \leq 1$
7. A length of string, chain, etc. which is hanging by both ends is called a catenary. Mathematically, a catenary is described by $f(x)=a \cosh \left(\frac{x}{a}\right)$, with $a>0$. What is the length of a catenary with its ends fixed at $(1,1)$ and $(-1,1)$? (A bicycle or car with square wheels would drive smoothly along a road lined with inverted catenary speed bumps.)
8. Sketch the astroid given by $x^{2 / 3}+y^{2 / 3}=1$ (there should be a section of curve in each of the 4 quadrants). Find the perimeter of the astroid (hint: use symmetry to reduce the amount of work).
9. The function $f(x)=\cos ^{-1}\left(e^{x}\right)$ defines a function on $(-\infty, 0]$. Set up 2 integrals (one with respect to x and one with respect to y) to find the arc length of the curve $y=f(x)$ on $-\frac{\ln 2}{2} \leq x \leq 0$. Compute the integral of your choice.
