Questions for recitation 17 February 2021

1. Determine whether the following definite integrals represent an area or a volume. Determine what shape is described (e.g. triangle, sphere, cone). Sketch the planar region or solid and label its dimensions.
(a) $\int_{0}^{1} 3 x d x$
(b) $\int_{0}^{12} \pi\left(144-h^{2}\right) d h$
(c) $\int_{0}^{\sqrt{15}} \sqrt{15-h^{2}} d h$
(d) $\int_{0}^{7} 5\left(1-\frac{h}{7}\right) d h$
(e) $\int_{0}^{6} \pi\left(3-\frac{y}{2}\right)^{2} d y$
2. Consider the region in the first quadrant bounded by the curves $y=\sqrt{x}$ and $y=\frac{x^{2}}{8}$.
(a) Find the volume of the solid with this region as its base and cross-section perpendicular to the x-axis that are squares.
(b) Find the volume of the solid with this region as its base and cross-section perpendicular to the y-axis that are squares.
(c) What is the volume of the solid obtained by revolving this region about the y-axis?
3. Challenging problem: A bowl is shaped like a hemisphere with radius 30 cm . A heavy ball of diameter 10 cm is placed in the bottom of the bowl and water is poured in the bowl to a height of $0<h<15 \mathrm{~cm}$. Find the volume of water in the bowl.
4. Example 9 on §6.2: A wedge is cut out of a circular cylinder of radius 4 by two planes. One plane is perpendicular to the axis of the cylinder. The other intersects the first at an angle of 30° along a diameter of the cylinder. Find the volume of the wedge.
5. A couple of weeks ago we derived the "normalization constant" for Gamma probability density functions through the following indefinite integral:

$$
\int_{0}^{\infty} t^{n} e^{-\lambda t} d t=\frac{n!}{\lambda^{n+1}}
$$

for a positive integer n (the "shape parameter") and constant $\lambda>0$ (the "rate parameter"). Use this result to find the volume of the solid generated by revolving the region in the first quadrant below the curve $y=x^{n} e^{-\lambda x}$ about the x-axis.

