Questions for recitation 7 April 2021

1. What is wrong with the following computation (for $x>0$?)

$$
\begin{gathered}
2<\left(1+x+x^{2}+x^{3}+\cdots+x^{n}+\ldots\right)+\left(1+\frac{1}{x}+\frac{1}{x^{2}}+\frac{1}{x^{3}}+\cdots+\frac{1}{x^{n}}+\ldots\right) \\
=\frac{1}{1-x}+\frac{1}{1-\frac{1}{x}}=\frac{1}{1-x}-\frac{x}{1-x}=1
\end{gathered}
$$

2. For what values of x do the following series converge (i) absolutely, (ii) conditionally? Justify.
(a) $\sum_{n=1}^{\infty} \frac{n^{5}(x-3)^{2 n}}{4^{n}}$
(b) $\sum_{n=1}^{\infty} \frac{n[\ln (x)]^{n-1}}{x}$
(c) $\sum_{n=1}^{\infty} \frac{2^{n} x^{n}}{(3 n)!n!}$
3. For the following power series, find the interval of convergence and the sum of the series where it is convergent.
(a) $\sum_{n=1}^{\infty} \frac{(x-1)^{2 n}}{4^{n}}$
(b) $\sum_{n=0}^{\infty}(x-1)^{n}$
4. Find the radius of convergence and the interval of convergence for the following series:
(a) $\sum_{n=1}^{\infty}\left(1+\frac{2}{n}\right)^{n} x^{n}$
(b) $\sum_{n=1}^{\infty} n!(x-\pi)^{n}$
(c) $\sum_{n=3}^{\infty}\left(\frac{x^{2}-1}{2}\right)^{n}$ (Note: this does not match our usual form of a "power series"; it is not centered properly. For this reason, the notion of "radius of convergence" may not be well defined as the series may lack symmetry).
