Questions for recitation 9 April 2021

1. Consider the power series below. For what values of x does the series converge absolutely? Conditionally? What is the interval of convergence?

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}(x-4)^{n}}{n 2^{n}}
$$

Solution: By the ratio test: $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{|x-4|}{2}$, where this is less than one for $2<x<6$. For $x=2$, this simplifies to the harmonic series and diverges. For $x=6$ this simplifies to the alternating harmonic series and converges conditionally. Thus, the interval of convergence is $2<x \leq 6$ where the interior of the interval is absolute convergence and $x=6$ is conditional.
2. Consider $g(x)=\ln (1+x)$.
(a) Using $\frac{1}{1+t}=\sum_{n=0}^{\infty}(-t)^{n}$ for $|t|<1$, find a series for $g(x)$ and the associated radius of convergence.
(b) Suppose we wish to evaluate $\int_{0}^{1} x g(x) d x$ via series. How many terms of the associated series would we need to use to ensure that our result is within .01 of the correct value?

Solution:

a) $\frac{d}{d x} g(x)=\frac{1}{1+x} \stackrel{|x|<1}{=} \sum_{n=0}^{\infty}(-x)^{n}$. Then we can integrate both sides to get: $g(x)=$ $\int \sum_{n=0}^{\infty}(-x)^{n} d x=\sum_{n=0}^{\infty} \int(-1)^{n}(x)^{n} d x=\sum_{n=0}^{\infty}(-1)^{n} C+\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n+1}}{n+1}$. We then note that if $x=0$, our series should also equal zero (since $\ln (1)=0$), so the constant of integration is 0 . Then $g(x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n+1}}{n+1}$
b) Using a), we are interested in finding $\int_{0}^{1} x g(x) d x=\int_{0}^{1} \sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n+2}}{n+1} d x=\left.\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n+3}}{(n+1)(n+3)}\right|_{0} ^{1}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(n+1)(n+3)}$. Using the alternating series remainder theorem, we should include terms until ($n+1$) ($n+$ $3)>100$, which occurs at $n=9$. We include 9 terms (since the index of the series begins at 0).
3. Noting that the geometric series satisfies $\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x}$ for $|x|<1$, determine power series expansions for the following functions. Also determine the relevant radii of convergence.
(a) $\frac{1}{1+x^{2}}$
(b) $\frac{1}{x+2}$
(c) $\frac{x^{3}}{x+2}$

Solution:

a) $\frac{1}{1+x^{2}}=\frac{1}{1-\left(-x^{2}\right)} \stackrel{\left|x^{2}\right|<1}{=} \sum_{n=0}^{\infty}\left(-x^{2}\right)^{n}=\sum_{n=0}^{\infty}(-1)^{n} x^{2 n}$
b) $\frac{1}{x+2}=\frac{1}{2} \cdot \frac{1}{1-\left(\frac{-x}{2}\right)} \stackrel{|x|<2}{=} \frac{1}{2} \sum_{n=0}^{\infty}\left(\frac{-x}{2}\right)^{n}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n+1}} x^{n}$
c) Using part b): $\frac{x^{3}}{x+2}=x^{3} \cdot \frac{1}{x+2} \stackrel{|x|<2}{=} x^{3} \cdot \sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n+1}} x^{n}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n+1}} x^{n+3}$

