Questions for recitation 12 March 2021

- 1. Find a plausible formula for the nth term in the sequence. Note that n should start at 1 in each case.
 - (a) $0,1,1,2,3,5,8,13,\ldots$
 - (b) 0,1,0,1,0,1,...
 - (c) $1,0,-1,0,1,0,\ldots$
 - (d) -3,-2,-1,0,1,...

2. Consider the sequence given by $a_1 = 1$, $a_n = \left(1 - \frac{1}{n^2}\right)a_{n-1}$.

- (a) Write out the first 4 terms of the sequence.
- 3. A ball is dropped from a height of ten feet and bounces. Each bounce is $\frac{3}{4}$ the height of the bounce before. So, after the ball hits the floor for the first time, the ball rises to a height of $10(\frac{3}{4}) = 7.5$ feet, and after it hits the floor for a second time, it rises to a height of $7.5(\frac{3}{4}) = 10(\frac{3}{4})^2 = 5.625$ feet.
 - (a) What height does the ball rise to after it hits the floor for the *n*th time?
 - (b) Find an expression for the total vertical distance the ball has travelled when it hits the ground for the first, second, and third time.
 - (c) Find an expression for the total vertical distance the ball has travelled when it hits the ground for the nth time.
- 4. Write the first five terms of the following sequences.
 - (a) $a_1 = 1$, and $a_{n+1} = a_n + \frac{1}{2^n}$
 - (b) $a_1 = 2$, and $a_{n+1} = \frac{a_n}{2} (-1)^{n+1}$
 - (c) $a_1 = -2$, and $a_{n+1} = \frac{na_n}{n+1}$
 - (d) $a_1 = 2, a_2 = -1, \text{ and } a_{n+2} = \frac{a_{n+1}}{a_n}$
- 5. Consider the sequence $\{a_n\}$ given by $a_n = \frac{4^n}{n!}$.
 - (a) Find $\lim_{n\to\infty} a_n$.
- 6. Determine whether the sequences below converge or diverge. If a sequence converges, find the limit it converges to.

(a)
$$a_n = \frac{\sin n}{n}$$

(b) $a_n = \int_1^n \frac{1}{x^p} dx$ for $p > 1$
(c) $a_n = \frac{1}{n} \int_1^n \frac{1}{x} dx$