
Questions for recitation 14 April 2021

1. Find the Taylor series for the following functions about the indicated center a:

(a) f(x) = e−2x a = 0
(b) f(x) = x2 − 2x+ 4 a = b
(c) f(x) = 1

x2 a = 1
(d) f(x) = 2x a = 1

Solution:

(a) By direct substitution into ex =
∞∑
n=0

xn

n!
: f(x) = e−2x =

∞∑
n=0

(−1)n
2nxn

n!

(b) This is a polynomial already! Its Taylor series is an attempt to approximate it with a
polynomial; here, we’re approximating f(x) with x2 − 2x + 4, which is effective. (We
could recenter in terms of (x− b), but who cares?)

(c) By taking derivatives: f(1) = 1, f ′(x) = −2
x3 , f

(n)(x) = (−1)n(n+1)!
xn+2 . Then the series is:

f(x) =
∞∑
n=0

(−1)n(n+ 1)(x− 1)n.

The root test will demonstrate an IOC of (0, 2).

(d) The derivatives are f (n)(x) = (ln 2)n2x, so f(x) =
∑∞

n=0
(ln 2)n2

n!
(x− 1)n (We could have

found the Maclaurin series more easily by a substitution using 2x = ex ln 2).

2. Consider the following steps for estimating

∫ 1

0

dx

1 + x4
.

(a) Calculate the first 4 non-zero terms of the Maclaurin series for the integrand.

(b) Determine the radius of convergence of this series.

(c) Using the series, evaluate the integral.

(d) How should we bound the error involved in this integral?

Solution:

(a) By substitution into the geometric with r = −x4:

1

1 + x4
= 1− x4 + x8 − x12 + . . . .

(b) | − x4| < 1 =⇒ |x| < 1 is our interval of convergence, so R = 1.

(c) I ≈ x− x5

5
+
x9

9
− x13

13
]10 = 1− 1

5
+

1

9
− 1

13
.

(d) Rather than figuring out how to pass the error bound from Taylor Remainder Theorem
in (a) through the integrand, we can just use the Alternating Series Estimation Theorem,
and bound it by the “next” term in the sequence of 1

17
.



3. Find the Maclaurin series for f(x) =
x2

1 + x2
. For what values does it converge? Solution:

By substitution into the geometric with r = −x2:

f(x) = x2
∞∑
n=0

(−x2)n =
∞∑
n=0

(−1)nx2n+2.

The interval relies on the geometric, so x2 < 1 =⇒ −1 < x < 1. We can easily observe that
x = 1, x = −1 won’t work, as in either case the series will be 1− 1 + 1− 1 + . . . .

4. Find the sum of the following series by starting with a similar Taylor series and performing
any necessary transformations.

(a) x+ x3 +
x5

2!
+
x7

3!
+ . . .

(b) 2− 3 · 2x+ 4 · 3x2 − 5 · 4x3 + . . .

(c)
x2

2
+
x4

4
+
x6

6
+
x8

8
+ . . .

(d) 1− 3x2

2!
+

5x4

4!
− 7x6

6!
+ . . . .

Solution: This is a tricky approach to Taylor series problems, and there are a lot of ways to
get started on them. Try to write down the formula for an and compare it to known series:
the geometric, exponential, and trigonometric series.

(a) Noting the factorial denominators and that each term is positive, this looks like a similar
form to the series for ex =

∑∞
n=0 x

n. Noting that e2x = 1 + x2 + x4

2!
+ x6

3!
, we observe

that this series is the series for xex
2
.

(b) The coefficent of each term looks like (−1)n(n + 1)(n + 2) if we start from n = 0.
This looks like we took a couple derivatives! In fact, we can get this series by twice

differentiation of x2 − x3 + x4 − x5 + . . . , but this is the series for
x2

1 + x
. So we can

differentiate this function twice, and arrive at the function corresponding to the given
series, or:

∞∑
n=0

(−1)n(n+ 2)(n+ 1)xn =
∞∑
n=0

d2

dx2
(−x)n+2 =

d2

dx2

(
x2

1 + x

)
=

2

(1 + x)3

(c) The nth term of the sequence is x2n

2n
, which is the antiderivative of x2n−1. Let’s use this



to motivate our answer:

∞∑
n=0

x2n

2n
=
∞∑
n=1

∫
x2n−1 dx

=

∫
x

∞∑
n=0

x2n dx

=

∫
x

1

1− x2
dx (geo series)

=

∫
x

1− x2
dx =

−1

2
ln(1− x2)

We also could have arrived here by modifying the series for ln(1− x) = −
∑

xn

n
.

(d) The nth term is given by an =
(−1)n(2n+ 1)x2n

(2n)!
. This looks pretty messy, but we can

consider looking at series with similar forms. The alternating signs and exponential
denominators suggest that we should consider series for sin and cos. Let’s try to work
backwards and get our function into the same form as the series for a trig function.

First, note that

∫
an dx =

(−1)nx2n+1

2n
= x

(−1)nx2n

2n
where now the exponents match

the factorials, as in the series for sin and cos. In fact, we have arrived at:

∞∑
n=0

∫
an dx = x

∞∑
n=0

(−1)nx2n+1

2n
= x cos(x).

So if we differentiate this equation, we conclude that the original series was the derivative

of the series for x cos(x), so it was
∞∑
n=0

(−1)n(2n+ 1)x2n

(2n)!
= cos(x)− x sin(x).

5. Determine whether the following series converge or diverge:

(a)
∞∑
n=1

n

n2 + 1

(b)
∞∑
n=1

ln(2n)−
∞∑
n=1

ln(4n+ 2)

(c)
∞∑
n=1

n!

nn

Solution:

(a) Diverges by limit comparison test to bn = 1
n
.

(b) Diverges because each sum diverges by test for divergence. Even if we could combine
the ∞−∞ into a single sum (you can’t do that!!), the result would still diverge by the
test for divergence, as lim

n→∞
ln(2n)− ln(4n+ 2)→ ln(.5) 6= 0.



(c) Ratio test:

lim
n→∞

an+1

an
= lim

n→∞

(n+ 1)!

n!
· nn

(n+ 1)n+1
= lim

n→∞

(
n

n+ 1

)n

=
1

e
< 1,

so this converges absolutely.

6. Find the radius and interval of convergence for the following power series:

(a)
∞∑
n=1

(x+ 3)n√
n

(b)
∞∑
n=1

cos(nπ)xn

3n
(c)

∞∑
n=1

(2x− 8)n

n!

Solution:

(a) From the ratio test:

lim
n→∞

an+1

an
= lim

n→∞

(x+ 3)n+1

(x+ 3)n
·
√
n√

n+ 1
= |x+ 3|.

|x+3| < 1 for −4 < x < −2. From x = −2 we have
∞∑
n=1

1n

√
n
, which diverges by p-series.

From x = −4 we have
∞∑
n=1

(−1)n√
n
, which converges by the alternating series test, but

does not converge absolutely by p-series. So the interval of convergence is [−4,−2) with
the left end-point conditional and the interior absolute.

(b) Noting that cos(nπ) = (−1)n, the ratio test:

lim
n→∞

an+1

an
= lim

n→∞

(x/3)n+1

(x/3)n
=
x

3
.

|x/3| < 1 for −3 < x < 3, and the left and right endpoints give
∑

1n and
∑

(−1)n,
respectively. These each diverge by the test for divergence, so the interval of convergence
is (−3, 3) and is absolute.

(c) From the ratio test:

lim
n→∞

an+1

an
= lim

n→∞

(2x− 8)n+1

(2x− 8)n
· n!

(n+ 1)!
= lim

n→∞

|2x− 8|
n+ 1

= 0.

We conclude that we have absolute convergence for all x.

7. Consider the integral

∫ ∞
0

xe−x

1− e−x
dx. While the integral is convergent, the corresponding

anti-derivative can not be computed in closed form with elementary functions.

(a) Use the substitution u = 1 − e−x to rewrite the integral. You may have to solve for x
in terms of u.

(b) Rewrite the resulting integrand in terms of series.

(c) Integrate to get a series that when evaluates, will give the correct definite integral.



Solution:

(a) The substitution suggested yields I =

∫ 1

0

− ln(1− u)

u
du.

(b) Using the series for ln(1−u) of−
∑∞

n=0
un+1

n+1
, we get: I =

∫ 1

0

∞∑
n=0

un+1du

u(n+ 1)
=
∞∑
n=0

∫ 1

0

undu

(n+ 1)
.

(c) Integrating and evaluating gives I =
∞∑
n=0

1

(n+ 1)2
=
∞∑
n=1

1

n2
.

8. The sum
∞∑
n=1

1

n2
is a fairly famous one (you may have seen it before...) The first proof of its

value relies on Taylor series and the properties of polynomials. We can recreate Newton’s
proof.

(a) Write out the full Maclaurin series for sin(x)
x

and state its interval of convergence.

(b) Your result in (a) is a polynomial. The roots of it are at the roots of sin(x). Factor this
polynomial according to all of its roots, but write them as (1± x

c
) instead of as (x± c).

(c) Look closely at the resulting product. The positive and negative roots have a very
similar form. Simplify accordingly.

(d) If you were to multiply this out, what would the coefficient of x2 be? It should match
the coefficient in part (a), so set them equal and solve for the resulting series.

Solution:

(a) From the known series for sin(x), we have
sin(x)

x
= 1− x2

3!
+
x4

5!
− · · · =

∞∑
n=0

(−1)nx2n

(2n+ 1)!
.

This converges for all real x.

(b) The roots for sin(x) are±nπ for all non-zero integers n, so we should be able to factor the

polynomial
sin(x)

x
=
(

1− x

π

)(
1 +

x

π

)(
1− x

2π

)(
1 +

x

2π

)
· · ·
(

1− x

nπ

)(
1 +

x

nπ

)
· · · .

Note that it’s not obvious that this factorization technique still works on infinite prod-
ucts; take on faith that it does for now (it was proven by Weierstrauss).

(c)
sin(x)

x
=

(
1− x2

π2

)(
1− x2

22π2

)(
1− x2

32π2

)
· · ·
(

1− x2

n2π2

)
· · · .

(d) The coefficient of x2 comes from fully multiplying this out, where for each term of the
product we can only “choose” the x2 term once, so we choose the “1” term from the other

pieces of the product. We are left with a coefficient of x2 of
−1

π2
− 1

22π2
− 1

32π2
− · · · =

−1

π2

∞∑
n=1

1

n2
. But this value should equal −1

3!
, the actual coefficient of the series in (a).

We conclude that
∞∑
n=1

1

n2
=
π2

6
.


