Questions for recitation 24 March 2021
1. Exercises 11.4: #29-32, 40-43, 45-46.

Exercises 11.3: #22, 34, 41-44

2. Determine if each of the series below converges or diverges. If possible, for each convergent
series, determine the sum of the series. Be sure to fully motivate your answers.
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Solution:
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(a) This is geometric, and converges to LH.
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(b) This is the sum of 2 geometric series, and converges to T
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(c¢) This is a positive, decreasing, and continuous function of n, so it has the same behavior
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(d) Diverges by the limit comparison test to b, = \/Lﬁ, as Z—n — 1 and ) b, — oo by a
p-test. "

(e) Diverges by the divergence test

3. Find the sum of the series

UEEIEE SPRL UL SRS S S L
2 3 4 6 8 9 12 16 18
where the terms are the reciprocals of the positive integers whose only prime factors are 2s
and 3s.



Solution: We can arrive at this series by multiplying the series containing all of the reciprocals
of the positive integers whose only prime factor is 2 to the series containing only the 3s, or:
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