
Questions for recitation 19 March 2021

1. Exercises 11.3: #27-28, 32-33, 35-36, 38

2. Determine whether the following sums converge or diverge. Justify your answers. If you can
figure out what a convergent sum converges to, do so.
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Solution:

(a) Converges. This is a finite sum.

(b) Converges by the integral test. f(x) = ln(x)
x2 is continuous, positive, decreasing for x ≥ 3,

and
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=
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converges by the integral test (via the limit tan−1(x)→ π/2)
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(h) Diverges by the integral test: f(x) = 1
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is positive, decreasing, and continuous for
x ≥ 10, and ∫ ∞
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(i) Note that sin(nπ) = 0 for integer n. Every term of this series is exactly 0, so sn is a
constant sequence, and therefore converges to 0.

3. Find all non-negative values for α such that the infinite sum
∑
n

αln(n) converges.

Solution: Let’s write out a few terms:
∞∑
n=1

αln(n) = α0 + αln 2 + αln 3 + · · · . This somewhat

resembles a geometric-like growth. Using that as motivation, we can immediately see that
the sum converges if α = 0 (every term is zero) and the sum will diverge if α ≥ 1 (since the
terms an 9 0). 0 < α < 1 will require a little more work. Since 0 < α < 1, f(x) = αlnx is
continuous, positive, and decreasing. We can use the integral test!∫ ∞
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The limit tends to zero if (αe) < 1 and to infinity if (αe) > 1. When (αe) = 1, the original
series is the harmonic series and diverges. Putting this all together, we have that the sum
converges for 0 ≤ α < 1

e
.


