Questions for recitation 19 March 2021

- 1. Exercises 11.3: #27-28, 32-33, 35-36, 38
- 2. Determine whether the following sums converge or diverge. Justify your answers. If you can figure out what a convergent sum converges to, do so.

(a)
$$\sum_{n=4}^{323} \frac{1}{\sqrt{n}}$$

(b)
$$\sum_{n=3}^{\infty} \frac{\ln(n)}{n^2}$$

(c)
$$\frac{1}{4} + \frac{1}{13} + \frac{1}{22} + \frac{1}{31} + \frac{1}{40} + \dots$$

(d)
$$\sum_{n=19}^{\infty} \frac{18}{2 + n^2}$$

(e)
$$\sum_{n=-3}^{\infty} \cos\left(\frac{3}{n^2}\right).$$

(f)
$$\sum_{n=1}^{\infty} \ln\left(\frac{1}{n}\right) - \ln\left(\frac{1}{n^2}\right)$$

(g)
$$\sum_{n=9}^{\infty} 5(4)^{8-n}$$

(h)
$$\sum_{n=10}^{\infty} \frac{1}{n \ln(n)}$$

(i)
$$\sum_{n=4}^{\infty} \frac{n^2 \sqrt{|\sin n\pi|}}{n^3 + 3}$$

Solution:

- (a) Converges. This is a finite sum.
- (b) Converges by the integral test. $f(x) = \frac{\ln(x)}{x^2}$ is continuous, positive, decreasing for $x \ge 3$, and $\int_3^\infty f(x) dx \stackrel{u=\ln x}{=} \int_{\ln(3)}^\infty e^{-u} du \to 1/3$.
- (c) This is $a_n = \frac{1}{9n-5}$, so $\sum a_n$ diverges by an integral test
- (d) $\sum_{n=19}^{\infty} \frac{18}{2+n^2}$ converges by the integral test (via the limit $\tan^{-1}(x) \to \pi/2$)
- (e) $\cos\left(\frac{3}{n^2}\right) \to 1$, so the sum diverges by the divergence test.
- (f) $\ln\left(\frac{1}{n}\right) \ln\left(\frac{1}{n^2}\right) = \ln\left(\frac{n^2}{n}\right) \to \infty$, so the sum diverges by the divergence test.

(g)
$$\sum_{n=9}^{\infty} 5(4)^{8-n} = \sum_{n=1}^{\infty} 5(4)^{-n} = \sum_{n=1}^{\infty} \frac{5}{4} \left(\frac{1}{4}\right)^{n-1} = \frac{\frac{5}{4}}{1-\frac{1}{4}} = \frac{5}{3}$$

(h) Diverges by the integral test: $f(x) = \frac{1}{x \ln x}$ is positive, decreasing, and continuous for $x \ge 10$, and

$$\int_{10}^{\infty} \frac{dx}{x \ln x} \stackrel{u=\ln x}{=} \lim_{t \to \infty} \ln(\ln x)|_{10}^{t} \to \infty$$

- (i) Note that $\sin(n\pi) = 0$ for integer *n*. Every term of this series is exactly 0, so s_n is a constant sequence, and therefore converges to 0.
- 3. Find all non-negative values for α such that the infinite sum $\sum_{n} \alpha^{\ln(n)}$ converges.

Solution: Let's write out a few terms: $\sum_{n=1}^{\infty} \alpha^{\ln(n)} = \alpha^0 + \alpha^{\ln 2} + \alpha^{\ln 3} + \cdots$. This somewhat resembles a geometric-like growth. Using that as motivation, we can immediately see that the sum converges if $\alpha = 0$ (every term is zero) and the sum will diverge if $\alpha \ge 1$ (since the terms $a_n \not\rightarrow 0$). $0 < \alpha < 1$ will require a little more work. Since $0 < \alpha < 1$, $f(x) = \alpha^{\ln x}$ is continuous, positive, and decreasing. We can use the integral test!

$$\int_{1}^{\infty} \alpha^{\ln x} dx \stackrel{u=\ln x}{=} \lim_{t \to \infty} \int_{0}^{t} \alpha^{u} (e^{u} du)$$
$$= \lim_{t \to \infty} \int_{0}^{t} (\alpha e)^{u} du$$
$$= \lim_{t \to \infty} \frac{(\alpha e)^{u}}{\ln(\alpha e)} \Big]_{0}^{t}$$

The limit tends to zero if $(\alpha e) < 1$ and to infinity if $(\alpha e) > 1$. When $(\alpha e) = 1$, the original series is the harmonic series and diverges. Putting this all together, we have that the sum converges for $0 \le \alpha < \frac{1}{e}$.