Questions for recitation 19 March 2021

1. Exercises 11.3: \#27-28, 32-33, 35-36, 38
2. Determine whether the following sums converge or diverge. Justify your answers. If you can figure out what a convergent sum converges to, do so.
(a) $\sum_{n=4}^{323} \frac{1}{\sqrt{n}}$
(b) $\sum_{n=3}^{\infty} \frac{\ln (n)}{n^{2}}$
(c) $\frac{1}{4}+\frac{1}{13}+\frac{1}{22}+\frac{1}{31}+\frac{1}{40}+\ldots$
(d) $\sum_{n=19}^{\infty} \frac{18}{2+n^{2}}$
(e) $\sum_{n=-3}^{\infty} \cos \left(\frac{3}{n^{2}}\right)$.
(f) $\sum_{n=1}^{\infty} \ln \left(\frac{1}{n}\right)-\ln \left(\frac{1}{n^{2}}\right)$
(g) $\sum_{n=9}^{\infty} 5(4)^{8-n}$
(h) $\sum_{n=10}^{\infty} \frac{1}{n \ln (n)}$
(i) $\sum_{n=4}^{\infty} \frac{n^{2} \sqrt{|\sin n \pi|}}{n^{3}+3}$

Solution:

(a) Converges. This is a finite sum.
(b) Converges by the integral test. $f(x)=\frac{\ln (x)}{x^{2}}$ is continuous, positive, decreasing for $x \geq 3$, and $\int_{3}^{\infty} f(x) d x \stackrel{u=\ln x}{=} \int_{\ln (3)}^{\infty} e^{-u} d u \rightarrow 1 / 3$.
(c) This is $a_{n}=\frac{1}{9 n-5}$, so $\sum a_{n}$ diverges by an integral test
(d) $\sum_{n=19}^{\infty} \frac{18}{2+n^{2}}$ converges by the integral test (via the limit $\tan ^{-1}(x) \rightarrow \pi / 2$)
(e) $\cos \left(\frac{3}{n^{2}}\right) \rightarrow 1$, so the sum diverges by the divergence test.
(f) $\ln \left(\frac{1}{n}\right)-\ln \left(\frac{1}{n^{2}}\right)=\ln \left(\frac{n^{2}}{n}\right) \rightarrow \infty$, so the sum diverges by the divergence test.
(g) $\sum_{n=9}^{\infty} 5(4)^{8-n}=\sum_{n=1}^{\infty} 5(4)^{-n}=\sum_{n=1}^{\infty} \frac{5}{4}\left(\frac{1}{4}\right)^{n-1}=\frac{\frac{5}{4}}{1-\frac{1}{4}}=\frac{5}{3}$.
(h) Diverges by the integral test: $f(x)=\frac{1}{x \ln x}$ is positive, decreasing, and continuous for $x \geq 10$, and

$$
\left.\int_{10}^{\infty} \frac{d x}{x \ln x} \stackrel{u=\ln x}{=} \lim _{t \rightarrow \infty} \ln (\ln x)\right|_{10} ^{t} \rightarrow \infty
$$

(i) Note that $\sin (n \pi)=0$ for integer n. Every term of this series is exactly 0 , so s_{n} is a constant sequence, and therefore converges to 0 .
3. Find all non-negative values for α such that the infinite sum $\sum_{n} \alpha^{\ln (n)}$ converges.

Solution: Let's write out a few terms: $\sum_{n=1}^{\infty} \alpha^{\ln (n)}=\alpha^{0}+\alpha^{\ln 2}+\alpha^{\ln 3}+\cdots$. This somewhat resembles a geometric-like growth. Using that as motivation, we can immediately see that the sum converges if $\alpha=0$ (every term is zero) and the sum will diverge if $\alpha \geq 1$ (since the terms $\left.a_{n} \nrightarrow 0\right) .0<\alpha<1$ will require a little more work. Since $0<\alpha<1, f(x)=\alpha^{\ln x}$ is continuous, positive, and decreasing. We can use the integral test!

$$
\begin{aligned}
\int_{1}^{\infty} \alpha^{\ln x} d x & \stackrel{u=\ln x}{=} \lim _{t \rightarrow \infty} \int_{0}^{t} \alpha^{u}\left(e^{u} d u\right) \\
& =\lim _{t \rightarrow \infty} \int_{0}^{t}(\alpha e)^{u} d u \\
& \left.=\lim _{t \rightarrow \infty} \frac{(\alpha e)^{u}}{\ln (\alpha e)}\right]_{0}^{t}
\end{aligned}
$$

The limit tends to zero if $(\alpha e)<1$ and to infinity if $(\alpha e)>1$. When $(\alpha e)=1$, the original series is the harmonic series and diverges. Putting this all together, we have that the sum converges for $0 \leq \alpha<\frac{1}{e}$.

