3-10 Find the mass and center of mass of the lamina that occupies the region D and has the given density function ρ.
7. D is bounded by $y=1-x^{2}$ and $y=0 ; \rho(x, y)=k y$

A type I region description for D is

$$
D=\left\{(x, y):-1 \leq x \leq 1, \quad 0 \leq y \leq 1-x^{2}\right\}
$$

Thus, the mass

$$
\begin{aligned}
m & =\iint_{0} \rho(x, y) d A \\
& =\int_{-1}^{1} \int_{0}^{1-x^{2}} k y d y d x \\
& =k \int_{-1}^{1}\left[\frac{y^{2}}{2}\right]_{y=0}^{y=1-x^{2}} d x \\
& =\frac{k}{2} \int_{-1}^{1}\left(1-x^{2}\right)^{2} d x \\
& =\frac{k}{2} \int_{-1}^{1}\left(1-2 x^{2}+x^{4}\right) d x \\
& =\frac{k}{2}\left[x-\frac{2}{3} x^{3}+\frac{1}{5} x^{5}\right]_{x=-1}^{x=1} \\
& =\frac{k}{2}\left[\left(1-\frac{2}{3}\left(1^{2}\right)+\frac{1}{5}\left(1^{5}\right)\right)-\left((-1)-\frac{2}{3}(-1)^{3}+\frac{1}{5}(-1)^{5}\right)\right] \\
& =\frac{k}{2}\left[\left(1-\frac{2}{3}+\frac{1}{5}\right)-\left(-1+\frac{2}{3}-\frac{1}{5}\right)\right] \\
& =\frac{k}{2}\left[\left(\frac{15-10+3}{15}\right)-\left(\frac{-15+10-3}{15}\right)\right] \\
& =\frac{k}{2}\left(\frac{8}{15}+\frac{8}{15}\right) \\
& =\frac{8}{15} .
\end{aligned}
$$

The coordinate of the center of mass of the lamina is (\bar{x}, \bar{y}) where

$$
\bar{x}=\frac{M_{y}}{m} \quad \text { and } \quad \bar{y}=\frac{M_{x}}{m}
$$

and

$$
\begin{aligned}
& M_{y}=\iint_{D} x \rho(x, y) d A \\
& =\int_{-1}^{1} \int_{0}^{1-x^{2}} k x y d y d x \\
& =k \int_{-1}^{1}\left[\frac{1}{2} x y^{2}\right]_{y=0}^{y=1-x^{2}} d x \\
& =\frac{k}{2} \int_{-1}^{1} x\left(1-x^{2}\right)^{2} d x \\
& =\frac{k}{2} \int_{-1}^{1} x \cdot u^{2} \cdot \frac{d u}{-2 x} \\
& =-\frac{k}{4} \int_{-1}^{1} u^{2} d u \\
& =-\frac{k}{4}\left[\frac{1}{3} u^{3}\right]_{x=-1}^{x=1} \\
& =\frac{-k}{12}\left[\left(1-x^{2}\right)^{3}\right]_{x=-1}^{x=1} \\
& =-\frac{k}{12}\left[\left(1-(1)^{2}\right)^{3}-\left(1-(-1)^{2}\right)^{3}\right] \\
& =-\frac{k}{12}\left[0^{3}-0^{3}\right] \\
& =0 \\
& M_{x}=\iint_{D} y \rho(x, y) d A \\
& =\int_{-1}^{1} \int_{0}^{1-x^{2}} k y^{2} d y d x \\
& -r r^{\prime}\left[\perp y^{3}\right]^{y=1-x^{2}} d x
\end{aligned}
$$

$$
\begin{aligned}
u=1-x^{2} & \Rightarrow d u=-2 x d x \\
& \Rightarrow d x=\frac{d u}{-2 x}
\end{aligned}
$$

$$
\begin{aligned}
& =k \int_{-1}^{1}\left[\frac{1}{3} y^{3}\right]_{y=0}^{y=1-x^{2}} d x \\
& =\frac{k}{3} \int_{-1}^{1}\left(1-x^{2}\right)^{3} d x \\
& =\frac{k}{3} \int_{-1}^{1}\left(1-3 x^{2}+3 x^{4}-x^{6}\right) d x \\
& =\frac{k}{3}\left[x-x^{3}+\frac{3}{5} x^{5}-\frac{1}{7} x^{7}\right]_{-1}^{1} \\
& =\frac{k}{3}\left[\left(1-x^{2}\right)^{3}=\left(1-x^{2}\right)\left(1-x^{2}\right)^{2}\right. \\
& \left.=\frac{k}{2}\right)\left(1-2 x^{2}+x^{4}\right) \\
& =\frac{k}{3}\left(\frac{3}{5}+\frac{3}{5}-\frac{1}{7}-\frac{1}{7}\right) \\
& =1-3 x^{2}+x^{4}-x^{2}+2 x^{4}-x^{6}-x^{6} \\
& =\frac{k}{3}\left(\frac{6}{5}-\frac{2}{7}\right) \\
& =\frac{k}{3}\left(\frac{42-10}{35}\right) \\
& =\frac{32 k}{105} .
\end{aligned}
$$

So

$$
\begin{aligned}
& \bar{x}=\frac{M_{y}}{m}=\frac{0}{\frac{8 k}{15}}=0 \\
& \bar{y}=\frac{M_{x}}{m}=\frac{32 k}{105} \div \frac{8 k}{15}=\frac{32 k}{105} \times \frac{15}{8 k}=\frac{4}{7}
\end{aligned}
$$

Hence, the mass $m=\frac{8 k}{15}$ and the center of mass $(\bar{x}, \bar{y})=\left(0, \frac{4}{7}\right)$.
29. Suppose X and Y are random variables with joint density function

$$
f(x, y)= \begin{cases}0.1 e^{-(0.5 x+0.2 y)} & \text { if } x \geqslant 0, y \geqslant 0 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Verify that f is indeed a joint density function.

Since $f(x, y) \geqslant 0$, it suffices to show $\iint_{\mathbb{R}^{2}} f(x, y) d A=1$.
But

$$
\begin{aligned}
& \iint_{\mathbb{R}^{2}} f(x, y) d A=\int_{0}^{\infty} \int_{0}^{\infty} 0 \cdot 1 e^{-(0.5 x+0.2 y)} d x d y \\
& =\int_{0}^{\infty} \lim _{t \rightarrow \infty} \int_{0}^{t} 0.1 e^{-(0.5 x+0.2 y)} d x d y \\
& =\int_{0}^{\infty} \lim _{t \rightarrow \infty}\left[\frac{0.1}{-0.5} e^{-(0.5 x+0.2 y)}\right]_{x=0}^{x=t} d y \\
& =-\frac{1}{5} \int_{0}^{\infty} \lim _{t \rightarrow \infty}\left[e^{-(0.5 t+0.2 y)}-e^{-0.2 y}\right] d y \\
& =-\frac{1}{5} \int_{0}^{\infty} \lim _{t \rightarrow \infty} e^{-0.2 y}\left[e^{-0.5 t}-1\right] d y \\
& =-\frac{1}{5} \int_{0}^{\infty} e^{-0.2 y} \lim _{t \rightarrow \infty}\left[e^{-0.5 t}-1\right] d y \\
& =-\frac{1}{5} \int_{0}^{\infty} e^{-0.2 y}(0-1) d y \\
& =\frac{1}{5} \int_{0}^{\infty} e^{-0.2 y} d y \\
& =\frac{1}{5}\left[\lim _{t \rightarrow \infty} \int_{0}^{t} e^{-0 \cdot 2 y} d y\right] \\
& =\frac{1}{c} \lim \left[\frac{-1}{-a} e^{-0.2 y}\right]^{y=t}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{5} \lim _{t \rightarrow \infty}\left[\frac{-1}{0.2} e^{-0.2 y}\right]_{y=0}^{y=t} \\
& =-1\left(\lim _{t \rightarrow \infty} e^{-0.2 t}-e^{0}\right) \\
& =-1(0-1) \\
& =1 .
\end{aligned}
$$

Hence, f is indeed a joint density.
(b) Find the following probabilities.
(i) $P(Y \geqslant 1)$
(ii) $P(X \leqslant 2, Y \leqslant 4)$
(i)

$$
\begin{aligned}
P(Y \geqslant 1) & =\int_{1}^{\infty} \int_{-\infty}^{\infty} f(x, y) d x d y \\
& =\int_{1}^{\infty} \int_{0}^{\infty} 0.1 e^{-(0.5 x+0.2 y)} d x d y \\
& =\int_{1}^{\infty}\left[\frac{0.1}{-0.5} e^{-(0.5 x+0.2 y)}\right]_{x=0}^{\infty} d y \\
& =-\frac{1}{5} \int_{1}^{\infty} e^{-0.2 y}\left[e^{-0.5 x}\right]_{x=0}^{\infty} d y \\
& =-\frac{1}{5} \int_{1}^{\infty} e^{-0.2 y}[0-1] d y \\
& =\frac{1}{5} \int_{1}^{\infty} e^{-0.2 y} d y \\
& \left.=1-e^{-0.2 y}\right\rceil^{\infty}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{5}\left[\frac{1}{-0.2} e^{-0.2 y}\right]_{y=1}^{\infty} \\
& =-1\left[e^{-0.2 y}\right]_{y=1}^{\infty} \\
& =-1\left(0-e^{-0.2}\right) \\
& =e^{-0.2} \\
& \approx 0.8187
\end{aligned}
$$

(ii)

$$
\begin{aligned}
P(X \leq 2, Y \leq 4) & =\int_{-\infty}^{2} \int_{-\infty}^{4} f(x, y) d y d x \\
& =\int_{0}^{2} \int_{0}^{4} 0.1 e^{-(0.5 x+0.2 y)} d y d x \\
& =\int_{0}^{2}\left[\frac{0.1}{-0.2} e^{-(0.5 x+0.2 y)}\right]_{y=0}^{4} d x \\
& =-\frac{1}{2} \int_{0}^{2} e^{-0.5 x}\left[e^{-0.2(4)}-e^{0}\right] d x \\
& =-\frac{1}{2} \int_{0}^{2} e^{-0.5 x}\left(e^{-0.8}-1\right) d x \\
& =-\frac{1}{2}\left(e^{-0.8}-1\right) \int_{0}^{2} e^{-0.5 x} d x \\
& =\frac{1}{2}\left(1-e^{-0.8}\right)\left[\frac{1}{-0.5} e^{-0.5 x}\right]_{x=0}^{x=2} \\
& =-1\left(1-e^{-0.8}\right)\left[e^{-0.5(2)}-e^{0}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =-\left(1-e^{-0.8}\right)\left(e^{-1}-1\right) \\
& =\left(1-e^{-0.8}\right)\left(1-e^{-1}\right) \\
& \approx 0.3481 .
\end{aligned}
$$

(c) Find the expected values of X and Y.

The expected value of x

$$
\begin{aligned}
\mathbb{E} X & =\iint_{\mathbb{R}^{2}} x f(x, y) d A \\
& =\int_{0}^{\infty} \int_{0}^{\infty} 0.1 x e^{-(0.5 x+0.2 y)} d y d x \\
& =0.1 \int_{0}^{\infty} x e^{-0.5 x}\left[\frac{1}{-0.2} e^{-0.2 y}\right]_{y=0}^{\infty} d x \\
& =-\frac{1}{2} \int_{0}^{\infty} x e^{-0.5 x}[0-1] d x \\
& =\frac{1}{2} \int_{0}^{\infty} x e^{-0.5 x} d x \\
& =\frac{1}{2}\left[-\left.2 x e^{-0.5 x}\right|_{0} ^{\infty}-\left.4 e^{-0.5 x}\right|_{0} ^{\infty}\right] \\
& =\frac{1}{2}[(0+0)-(0-4)] \\
& =\frac{4}{2}=2 .
\end{aligned}
$$

2
NB: $\left.x e^{-0.5 x}\right|^{\infty}=0$ since $\lim _{t \rightarrow \infty} \frac{t}{e^{0.5 t}} \stackrel{L^{\prime} H}{=} \lim _{t \rightarrow \infty} \frac{2}{e^{0.5 t}}=0$.

Similarly, the expected value of Y

$$
\begin{aligned}
\mathbb{E} Y & =\iint_{\mathbb{R}^{2}} y f(e x, y) d A \\
& =\int_{0}^{\infty} \int_{0}^{\infty} 0.1 y e^{-(0.5 x+0.2 y)} d x d y \\
& =0.1 \int_{0}^{\infty} y e^{-0.2 y} d y \int_{0}^{\infty} e^{-0.5 x} d x \\
& =0.1[\underbrace{\left.-\left.5 y e^{-0.2 y}\right|_{0} ^{\infty}-\left.25 e^{-0.2 y}\right|_{0} ^{\infty}\right]}_{\text {From integnathin by parts }}\left[-\left.2 e^{-0.5 x}\right|_{0} ^{\infty}\right] \\
& =0.1[(0+0)-(0-25)][0-(-2)] \\
& =0.1(25)(2) \\
& =5 .
\end{aligned}
$$

$$
+\frac{u}{y} \quad \frac{d v}{e^{-0.2 y}}
$$

$$
-1{ }_{-5 e^{-0.2 y}}
$$

$$
+0 \longleftarrow 25 e^{-0.2 y}
$$

Integration by parts

NB: $\left.y e^{-0.2 y}\right|^{\infty}=0$ since $\lim _{t \rightarrow \infty} \frac{t}{e^{0.2 t}} \stackrel{L^{\prime} H}{=} \lim _{t \rightarrow \infty} \frac{5}{e^{0.2 t}}=0$.

$$
\begin{aligned}
m & =\frac{4-0}{2-0}=2 \\
\Rightarrow & y=2 x
\end{aligned}
$$

1-12 Find the area of the surface.
4. The part of the surface $2 y+4 z-x^{2}=5$ that lies above the triangle with vertices $(0,0),(2,0)$, and $(2,4)$

$$
\begin{aligned}
& 2 y+4 z-x^{2}=5 \\
& \Rightarrow z=\frac{1}{4}\left(5+x^{2}-2 y\right) \\
& \Rightarrow z_{x}=\frac{1}{4}(2 x)=\frac{x}{2} \Rightarrow z_{x}^{2}=\frac{x^{2}}{4} \\
& z_{y}=\frac{1}{4}(-2)=-\frac{1}{2} \Rightarrow z_{y}^{2}=\frac{1}{4} \\
& \Rightarrow \sqrt{1+z_{x}^{2}+z_{y}^{2}}=\sqrt{1+\frac{x^{2}}{4}+\frac{1}{4}} \\
& \\
& =\sqrt{\frac{5+x^{2}}{4}} \\
&
\end{aligned}
$$

Thus, surface area

$$
\begin{aligned}
A(s) & =\iint_{D} \sqrt{1+f_{x}^{2}+f_{y}^{2}} d A \\
& =\frac{1}{2} \int_{0}^{2} \int_{0}^{2 x} \sqrt{5+x^{2}} d y d x \\
& =\frac{1}{2} \int_{0}^{2} \sqrt{5+x^{2}} \int_{0}^{2 x} d y d x \\
& =\frac{1}{2} \int_{0}^{2} \sqrt{5+x^{2}}[y]_{y=0}^{y=2 x} d x
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2} \int_{0}^{2} 2 x \sqrt{5+x^{2}} d x \\
& =\frac{1}{2} \int_{5}^{9} 2 x \cdot u^{1 / 2} \cdot \frac{d u}{2 x} \\
& =\frac{1}{2} \int_{5}^{9} u^{1 / 2} d u \\
& =\left.\frac{1}{2} \cdot \frac{2}{3} u^{3 / 2}\right|_{5} ^{4} \\
& =\frac{1}{3}\left(9^{3 / 2}-5^{3 / 2}\right) \\
& =\frac{1}{3}(27-5 \sqrt{5}) .
\end{aligned}
$$

$$
\begin{aligned}
& u=5+x^{2} \Rightarrow d u=2 x d x \\
& \Rightarrow d x=\frac{d u}{2 x} \\
& x=0 \Rightarrow u=5 \\
& x=2 \Rightarrow u=5+2^{2}=9
\end{aligned}
$$

3-8 Evaluate the iterated integral.

$$
\text { 5. } \begin{aligned}
& \int_{1}^{2} \int_{0}^{2 z} \int_{0}^{\ln x} x e^{-y} d y d x d z \\
& \int_{0}^{2} \int_{0}^{2 z} \int_{0}^{\ln x} x e^{-y} d y d x d z=\int_{1}^{2} \int_{0}^{2 x} x\left[-e^{-y}\right]_{y=0}^{\ln x} d x d z \\
&=\int_{1}^{2} \int_{0}^{2 z} x\left[-e^{-\ln x}+1\right] d x d z \\
&=\int_{1}^{2} \int_{0}^{2 z} x\left[1-\frac{1}{x}\right] d x d z \\
&=\int_{1}^{2} \int_{0}^{2 z}(x-1) d x d z \\
&=\int_{1}^{2}\left[\frac{x^{2}}{2}-x\right]_{x=0}^{x=2 z} d \\
&=\int_{1}^{2}\left[\left(\frac{4 z^{2}}{2}-2 z\right)-(0-0)\right] d z \\
&=\int_{1}^{2}\left(2 z^{2}-2 z\right) d z \\
&=\frac{2}{3} z^{3}-\left.z^{2}\right|_{1} ^{2} \\
&=\left(\frac{2}{3}(2)^{3}-(2)^{2}\right)-\left(\frac{2}{3}\left(1^{3}\right)-(1)^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\frac{16}{3}-4\right)-\left(\frac{2}{3}-1\right) \\
& =\frac{14}{3}-3 \\
& =\frac{5}{3} .
\end{aligned}
$$

