1-10 Sketch the vector field \mathbf{F} by drawing a diagram like Figure 5 or Figure 9.
5. $\mathbf{F}(x, y)=\frac{y \mathbf{i}+x \mathbf{j}}{\sqrt{x^{2}+y^{2}}}$

Note that

$$
\begin{aligned}
|F(x, y)| & =\left|\frac{y i+x j}{\sqrt{x^{2}+y^{2}}}\right| \\
& =\sqrt{\left(\frac{1}{\left.\sqrt{x^{2}+y^{2}}\right)^{2}\left(y^{2}+x^{2}\right)}\right.} \\
& =\sqrt{\frac{y^{2}+x^{2}}{x^{2}+y^{2}}} \\
& =1
\end{aligned}
$$

A good strategy is to plot the vector field on lines (vertical or honiontal lines or slant) and well known curves (eg. $y=x^{2}, x=y^{2}$).
$\theta n x=0$,

$$
\begin{aligned}
F(x, y) & =\frac{y i+o j}{\sqrt{o^{2}+y^{2}}} \\
& =\frac{y i}{\sqrt{y^{2}}} \\
& =\frac{y i}{|y|} \\
& =\frac{y}{|y|}\langle 1,0\rangle
\end{aligned}
$$

On $y=0$,

$$
\begin{aligned}
F(x, y) & =\frac{0 i+x j}{\sqrt{x^{2}+0^{2}}} \\
& =\frac{x j}{|x|} \\
& =\frac{x}{|x|}\langle 0,1\rangle
\end{aligned}
$$

On $y=x$,

$$
\begin{aligned}
F(x, y) & =\frac{x i x_{j}}{\sqrt{x^{2}+x^{2}}} \\
& =\frac{x(i+j)}{\sqrt{2 x^{2}}} \\
& =\frac{x}{|x| \sqrt{2}}(i+j) \\
& \left.=\frac{x}{|x| \sqrt{2}}<1,1\right\rangle
\end{aligned}
$$

On $y=-x$,

$$
\begin{aligned}
F(x, y) & =\frac{-x i+x_{j}}{\sqrt{x^{2}+x^{2}}} \\
& =\frac{x(-i+j)}{\sqrt{2 x^{2}}} \\
& =\frac{x}{|x| \sqrt{2}}(-i+j) \\
& \left.=\frac{x}{|x| \sqrt{2}}<1\right\rangle
\end{aligned}
$$

$$
=\frac{x}{|x| \sqrt{2}}\langle-1,1\rangle
$$

$$
\begin{aligned}
\text { On } y & =x^{2} \\
f(x, y) & =\frac{x^{2} i+x j}{\sqrt{x^{2}+x^{4}}} \\
& =\frac{x(x i+j)}{|x| \sqrt{1+x^{2}}} \\
& =\frac{x}{|x| \sqrt{1+x^{2}}}\langle x, 1\rangle
\end{aligned}
$$

More generally,

$$
\begin{aligned}
& y=a x^{2} \\
& \Rightarrow F(x, y)=\frac{1}{\sqrt{x^{2}+x^{2}}}\left\langle a x^{2}, x\right\rangle
\end{aligned}
$$

$a<0$
Similarly,

$$
\begin{aligned}
\text { On } x & =a y^{2}, \\
F(x, y) & =\frac{y i+a y^{2} j}{\sqrt{y^{4}+y^{2}}} \\
& =\frac{1}{\sqrt{y^{4}+y^{2}}}\left\langle y, a y^{2}\right\rangle
\end{aligned}
$$

$$
a>0
$$

为

Plot from WolframAlpha

$a<0$
33. A particle moves in a velocity field $\mathbf{V}(x, y)=\left\langle x^{2}, x+y^{2}\right\rangle$.

If it is at position $(2,1)$ at time $t=3$, estimate its location at time $t=3.01$.

At time $t=3$, the position, $r(t)=\langle x(t), y(t)\rangle$ of the particle is $\langle 2,1\rangle$. So velocity of the particle at $t=3$ is

$$
\begin{aligned}
V(3) & =\left\langle 2^{2}, 2+1^{2}\right\rangle & r(t)=\langle x(t), y(t)\rangle \\
& =\langle 4,3\rangle . & d v(t)=\left\langle x^{\prime}(t), y^{\prime \prime}(t)\right\rangle d t
\end{aligned}
$$

But

$$
\begin{aligned}
r(t) & =\langle x(t), y(t)\rangle \\
\Rightarrow \frac{d r(t)}{d t} & =\left\langle x^{\prime}(t), y^{\prime}(t)\right\rangle \\
\Rightarrow d r(t) & =\left\langle x^{\prime}(t), y^{\prime}(t)\right\rangle d t \\
& =v(t) d t
\end{aligned}
$$

Thus, change in position

$$
d_{r}(3)=v(3)(0.01)
$$

$$
\begin{aligned}
& =\langle 4,3\rangle 0.01 \\
& =\langle 0.04,0.03\rangle
\end{aligned}
$$

Hence, at $t=3.01$, position of the particle

$$
\begin{aligned}
Y(3.01) & =Y(3)+\Delta Y(3) \\
& =\langle 2,1\rangle+\langle 0.04,0.03\rangle \\
& =\langle 2.04,2.03\rangle .
\end{aligned}
$$

1-16 Evaluate the line integral, where C is the given curve.
2. $\int_{C}(x / y) d s$,
$C: x=t^{3}, y=t^{4}, 1 \leqslant t \leqslant 2$
By defintion,

$$
\begin{aligned}
& \int_{c} \frac{x}{y} d s=\int_{a}^{b} f(x(t), y(t)) \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t \\
& x(t)=t^{3} \Rightarrow \frac{d x}{d t}=3 t^{2} \\
& y(t)=t^{4} \Rightarrow \frac{d y}{d t}=4 t^{3} \\
& =\int_{1}^{2} \frac{t^{3}}{t^{4}} \sqrt{\left(3 t^{2}\right)^{2}+\left(4 t^{3}\right)^{2}} d t \\
& =\int_{1}^{2} \frac{1}{t} \sqrt{9 t^{4}+16 t^{6}} d t \\
& =\int_{1}^{2} \frac{1}{t} \sqrt{t^{4}\left(9+16 t^{2}\right)} d t \\
& =\int_{1}^{2} \frac{1}{t}\left(\sqrt{t^{4}}\right) \sqrt{9+16 t^{2}} d t \\
& =\int_{1}^{2} \frac{1}{t}\left(t^{2}\right) \sqrt{9+16 t^{2}} d t \\
& =\int_{1}^{2} t \sqrt{9+16 t^{2}} d t \\
& =\int_{25}^{73} t \cdot u^{1 / 2} \cdot \frac{d u}{32 t} \\
& =\frac{1}{32} \int_{25}^{73} u^{1 / 2} d u \\
& \text {, . 3/21 173 }
\end{aligned}
$$

$$
\begin{aligned}
& =\left.\frac{1}{32}\left(\frac{2}{3} u^{3 / 2}\right)\right|_{25} ^{73} \\
& =\frac{1}{48}\left(73^{3 / 2}-25^{3 / 2}\right) \\
& =\frac{1}{48}\left(73 \cdot 73^{1 / 2}-5^{3}\right) \\
& =\frac{1}{48}(73 \sqrt{73}-125) .
\end{aligned}
$$

13. $\int_{C} x y e^{y z} d y, \quad C: x=t, y=t^{2}, z=t^{3}, 0 \leqslant t \leqslant 1$

By definition,

$$
\begin{aligned}
\int_{c} x y e^{y z} d y & =\int_{a}^{b} f(x(t), y(t), z(t)) y^{\prime}(t) d t \\
& =\int_{0}^{1} t\left(t^{0}\right) e^{t^{2} \cdot t^{3}} \cdot(2 t) d t \\
& =2 \int_{0}^{1} t^{4} e^{t^{5}} d t \\
& =2 \int_{0}^{1} t^{4} e^{u} \cdot \frac{d u}{5 t^{4}} \\
& =\frac{2}{5} \int_{0}^{1} e^{u} d u \\
& =\left.\frac{2}{5} e^{u}\right|_{u=0} ^{u=1}
\end{aligned}
$$

$$
\begin{aligned}
& u=t^{5} \\
& \Rightarrow d u=5 t^{4} d t \\
& \Rightarrow d t=\frac{d u}{5 t^{4}}
\end{aligned}
$$

Afso,

$$
\begin{aligned}
& t=0 \Rightarrow u=0 \\
& t=1 \Rightarrow u=1
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{2}{5}\left(e^{1}-e^{0}\right) \\
& =\frac{2}{5}\left(e^{\prime}-1\right)
\end{aligned}
$$

19-22 Evaluate the line integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where C is given by the vector function $\mathbf{r}(t)$.
21. $\mathbf{F}(x, y, z)=\sin x \mathbf{i}+\cos y \mathbf{j}+x z \mathbf{k}$, $\mathbf{r}(t)=t^{3} \mathbf{i}-t^{2} \mathbf{j}+t \mathbf{k}, \quad 0 \leqslant t \leqslant 1$

By definition,

$$
\begin{aligned}
\int_{c} F \cdot d r & =\int_{a}^{b} F(r(t)) \cdot r^{\prime}(t) d t \\
& =\int_{a}^{b} F(x(t), y(t), z(t)) \cdot r^{\prime}(t) d t
\end{aligned}
$$

But

$$
\begin{aligned}
r(t) & =t^{3} i-t^{2} j+t k \\
& =\left\langle t^{3},-t^{2}, t\right\rangle \\
\Rightarrow r^{\prime}(t) & =\left\langle 3 t^{2},-2 t, 1\right\rangle \text { and } x(t)=t^{3}, y(t)=-t^{2}, z(t)=t \\
\Rightarrow F(x, y, z) & =\left\langle\sin t^{3}, \cos \left(-t^{2}\right), t^{3} \cdot t\right\rangle \\
& =\left\langle\sin t^{3}, \cos t^{2}, t^{4}\right\rangle .
\end{aligned}
$$

Hence,

$$
\text { rEAde - } r^{b} \ldots \text {...l....tindt }
$$

$$
\begin{aligned}
& \int_{c} F \cdot d r=\int_{a}^{b} F(x(t), y(t), z(t)) \cdot r^{\prime}(t) d t \\
& =\int_{0}^{1}\left\langle\sin t^{3}, \cos t^{2}, t^{4}\right\rangle \cdot\left\langle 3 t^{2},-2 t, 1\right\rangle d t \\
& =\int_{0}^{1}\left[3 t^{2} \sin t^{3}-2 t \cos t^{2}+t^{4}\right] d t \\
& =3 \int_{0}^{1} t^{2} \sin t^{3} d t-2 \int_{0}^{1} t \cos t^{2} d t+\int_{0}^{1} t^{4} d t \\
& =3 \int_{0}^{1} t^{2} \sin u \cdot \frac{d u}{3 t^{2}}-2 \int_{0}^{1} t \cos u \cdot \frac{d u}{2 t}+\left.\frac{1}{5} t^{5}\right|_{t=0} ^{t=1} \\
& =\int_{0}^{1} \sin u d u-\int_{0}^{1} \cos u d u+\frac{1}{5}\left(1^{5}-0^{5}\right) \\
& =-\left.\cos u\right|_{u=0} ^{u=1}-\left.\sin u\right|_{u=0} ^{n=1}+\frac{1}{5} \\
& =-\cos 1+\cos 0-\sin 1+\sin 0+\frac{1}{5} \\
& =-\cos 1+1-\sin 1+\frac{1}{5} \\
& =1+\frac{1}{5}-\cos 1-\sin 1 \\
& =\frac{6}{5}-\cos 1-\sin 1 .
\end{aligned}
$$

33. A thin wire is bent into the shape of a semicircle $x^{2}+y^{2}=4, x \geqslant 0$. If the linear density is a constant k, find the mass and center of mass of the wire.

Using the parametrization

$$
x=2 \cos t \text { and } y=2 \sin t, \quad-\frac{\pi}{2} \leq t \leq \frac{\pi}{2}\left(\underset{\text { polar }!}{\operatorname{Thrim}_{\text {in }}}\right) .
$$

By definition, the mass

$$
\begin{aligned}
n & =\int_{c} p(x, y) d s \\
& =\int_{-\pi / 2}^{\pi / 2} k \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t \\
& =\int_{-\pi / 2}^{\pi / 2} k \sqrt{(2 \sin t)^{2}+(-2 \cos t)^{2}} d t \\
& =\int_{-\pi / 2}^{\pi / 2} k{\sqrt{4\left(\sin ^{2} t+\cos ^{2} t\right)} d t}^{\pi / 2} k \underbrace{(2) d t}_{-\pi / 2} \\
& =\int_{-\pi / 2}^{\pi / 2} d t \\
& =2 k \int_{t / 2}^{\pi / 2} \\
& =\left.2 k(t)\right|_{t=-\pi / 2} ^{\pi / 2} \\
& =2 \pi k
\end{aligned}
$$

The center of mass is (\bar{x}, \bar{y}) where

$$
\begin{aligned}
\bar{x} & =\frac{1}{m} \int_{c} x p(x, y) d s \\
& =\frac{1}{2 \pi k} \int_{-\pi / 2}^{\pi / 2} x k \cdot \underbrace{2 d t}_{d s} \\
& =\frac{1}{\pi} \int_{-\pi / 2}^{\pi / 2} 2 \cos t d t \\
& =\left.\frac{2}{\pi}(\sin t)\right|_{t=-\pi / 2} ^{\pi / 2} \\
& =\frac{2}{\pi}\left(\sin \frac{\pi}{2}-\sin (-\pi / 2)\right) \\
& =\frac{2}{\pi}(1+1) \\
& =\frac{4}{\pi} .
\end{aligned}
$$

and

$$
\begin{aligned}
\bar{y} & =\frac{1}{m} \int_{c} y \rho(x, y) d s \\
& =\frac{1}{2 \pi k} \int_{-\pi / 2}^{\pi / 2} y k \cdot \underbrace{2 d t}_{d s} \\
& =\frac{1}{\pi} \int_{-\pi / 2}^{\pi / 2} 2 \sin t d t
\end{aligned}
$$

$$
\begin{aligned}
& =\left.\frac{2}{\pi}(-\cos t)\right|_{-\pi / 2} ^{\pi / 2} \\
& =-\frac{2}{\pi}(\cos (\pi / 2)-\cos (-\pi / 2)) \\
& =-\frac{2}{\pi}(0-0) \\
& =0
\end{aligned}
$$

Hence, the center of mass

$$
(\bar{x}, \bar{y})=\left(\frac{4}{\pi}, 0\right) .
$$

38. If a wire with linear density $\rho(x, y, z)$ lies along a space curve C, its moments of inertia about the x-, y-, and z-axes are defined as

$$
\begin{aligned}
& I_{x}=\int_{C}\left(y^{2}+z^{2}\right) \rho(x, y, z) d s \\
& I_{y}=\int_{C}\left(x^{2}+z^{2}\right) \rho(x, y, z) d s \\
& I_{z}=\int_{C}\left(x^{2}+y^{2}\right) \rho(x, y, z) d s
\end{aligned}
$$

Find the moments of inertia for the wire in Exercise 35.
35. (b) Find the center of mass of a wire in the shape of the helix $x=2 \sin t, y=2 \cos t, z=3 t, 0 \leqslant t \leqslant 2 \pi$, if the density is a constant k.
$\ln 3 D$,

$$
d s=\sqrt{|d x|^{2}+\left|\frac{d y}{}\right|^{2}+\left|\frac{d z}{u}\right|^{2}} d t
$$

In 3D,

$$
\begin{aligned}
d s & =\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}} d t \\
& =\sqrt{(2 \cos t)^{2}+(-2 \sin t)^{2}+3^{2}} d t \\
& =\sqrt{4\left(\cos ^{2} t+\sin ^{2} t\right)+9} d t \\
& =\sqrt{4+9} d t \\
& =\sqrt{13} d t
\end{aligned}
$$

Thus, by definition, the moments of inertia are

$$
\begin{aligned}
I_{x} & =\int_{c}\left(y^{2}+z^{2}\right) \rho(x, y, z) d s \\
& =\int_{0}^{2 \pi}\left[(2 \cos t)^{2}+(3 t)^{2}\right] k \cdot \sqrt{13} d t \\
& =k \sqrt{13} \int_{0}^{2 \pi}\left(4 \cos ^{2} t+9 t^{2}\right) d t \\
& =k \sqrt{13} \int_{0}^{2 \pi}\left[4 \cdot \frac{1}{2}(1+\cos (2 t))+9 t^{2}\right] d t \\
& =k \sqrt{13} \int_{0}^{2 \pi}\left(2+2 \cos 2 t+9 t^{2}\right) d t \\
& =k \sqrt{13}\left[2 t+\sin 2 t+3 t^{3}\right]_{t=0}^{t=2 \pi} \\
& =k \sqrt{13}\left[2(2 \pi)-2(0)+\sin 4 \pi-\sin 0+3(2 \pi)^{3}-3\left(0^{3}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& =k \sqrt{13}\left(4 \pi+24 \pi^{3}\right) \\
& =4 \pi k \sqrt{13}\left(1+6 \pi^{2}\right) . \\
I_{y} & =\int_{c}\left(x^{2}+z^{2}\right) \rho(x, y, z) d s \\
& =\int_{0}^{2 \pi}\left[(2 \sin t)^{2}+(3 t)^{2}\right] k \cdot \sqrt{13} d t \\
& =k \sqrt{13} \int_{0}^{2 \pi}\left[4 \sin ^{2} t+9 t^{2}\right] d t \\
& \left.=k \sqrt{13} \int_{0}^{2 \pi}\left[4(1-\cos)^{2} t\right)+9 t^{2}\right] d t \\
& =k \sqrt{13} \int_{0}^{2 \pi}\left[4-4 \cdot \frac{1}{2}(1+\cos (2 t))+9 t^{2}\right] d t \\
& =k \sqrt{13} \int_{0}^{2 \pi}\left[4-2-2 \cos 2 t+9 t^{2}\right] d t \\
& =k \sqrt{13} \int_{0}^{2 \pi}\left(2-2 \cos 2 t+9 t^{2}\right) d t \\
& =k \sqrt{13}\left[2 t-2 \sin 2 t+3 t^{3}\right]_{t}^{2 \pi} \\
& \left.=k \sqrt{13}[2(2 \pi)-210)-2 \sin 4 \pi+2 \sin 0+3(2 \pi)^{3}-3(0)^{3}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =k \sqrt{13}\left[4 \pi+24 \pi^{3}\right] \\
& =4 \pi k \sqrt{13}\left(1+6 \pi^{2}\right) . \\
I_{z} & =\int_{c}\left(x^{2}+y^{2}\right) \rho(x, y, z) d s \\
& =\int_{0}^{2 \pi}\left[(2 \sin t)^{2}+(2 \cos t)^{2}\right] k \cdot \sqrt{13} d t \\
& =\int_{0}^{2 \pi}\left[4\left(\sin ^{2} t+\cos ^{2} t\right)\right] k \sqrt{13} d t \\
& =4 k \sqrt{13} \int_{0}^{2 \pi} d t \\
& =\left.4 k \sqrt{13} t\right|_{t=0} ^{2 \pi} \\
& =8 \pi \sqrt{13} k .
\end{aligned}
$$

