1-6 Find the length of the curve.
2. $\mathbf{r}(t)=\left\langle 2 t, t^{2}, \frac{1}{3} t^{3}\right\rangle, \quad 0 \leqslant t \leqslant 1$

$$
\begin{aligned}
& \gamma^{\prime}(t)=\left\langle 2,2 t, t^{2}\right\rangle . \\
& \begin{aligned}
\left|\gamma^{\prime}(t)\right|=\sqrt{2^{2}+(2 t)^{2}+\left(t^{2}\right)^{2}}=\sqrt{4+4 t^{2}+t^{4}} & =\sqrt{\left(2+t^{2}\right)^{2}} \\
& =\left|2+t^{2}\right| \\
& =2+t^{2}
\end{aligned}
\end{aligned}
$$

Thus, length of the curve

$$
\begin{aligned}
L=\int_{0}^{1}\left|\gamma^{\prime}(t)\right| d t & =\int_{0}^{1}\left(2+t^{2}\right) d t \\
& =2 t+\left.\frac{1}{3} t^{3}\right|_{t=0} ^{t=1} \\
& =\left(2(1)+\frac{1}{3}\left(1^{3}\right)\right)-\left(2(0)+\frac{1}{3}\left(0^{3}\right)\right) \\
& =2+\frac{1}{3} \\
& =\frac{7}{3}
\end{aligned}
$$

4. $\mathbf{r}(t)=\cos t \mathbf{i}+\sin t \mathbf{j}+\ln \cos t \mathbf{k}, \quad 0 \leqslant t \leqslant \pi / 4$

$$
\begin{aligned}
& \gamma^{\prime}(t)=-\sin t i+\cos t k-\frac{\sin t}{\cos t} k=-\sin t i+\cos t k-\tan t k \\
& \Rightarrow\left|\gamma^{\prime}(t)\right|=\sqrt{(-\sin t)^{2}+(\cos t)^{2}+(-\tan t)^{2}} \\
& =\sqrt{\cdot \cdots-2 L \cdot L^{2 L}}
\end{aligned}
$$

$$
\begin{aligned}
& =\sqrt{\sin ^{2} t+\cos ^{2} t+\tan ^{2} t} \\
& =\sqrt{1+\tan ^{2} t} \\
& =\sqrt{\sec ^{2} t} \\
& =|\sec t| \\
& =\sec t \quad \operatorname{since} \text { sect } \geqslant 0 \text { for } 0 \leq t \leq \frac{\pi}{4}
\end{aligned}
$$

So the arclength

$$
\begin{aligned}
L & =\int_{0}^{\pi / 4} \sec t d t \\
& =\left.\ln |\tan t+\sec t|\right|_{0} ^{\pi / 4} \\
& =\ln |\tan \pi / 4+\sec \pi / 4|-\ln |\tan 0+\sec 0| \\
& =\ln |1+\sqrt{2}|-\ln |0+1| \\
& =\ln (1+\sqrt{2})
\end{aligned}
$$

17-20
(a) Find the unit tangent and unit normal vectors $\mathbf{T}(t)$ and $\mathbf{N}(t)$.
(b) Use Formula 9 to find the curvature.
19. $\mathbf{r}(t)=\left\langle\sqrt{2} t, e^{t}, e^{-t}\right\rangle$

$$
\begin{aligned}
& r^{\prime}(t)=\left\langle\sqrt{2}, e^{t},-e^{-t}\right\rangle \\
& \Longrightarrow|, \|(t)|-\sqrt{1-1^{2}, \mid-t^{2} \cdot 1-t^{2}}
\end{aligned}
$$

$$
\begin{aligned}
\Longrightarrow\left|\gamma^{\prime}(t)\right| & =\sqrt{(\sqrt{2})^{2}+\left(e^{t}\right)^{2}+\left(-e^{-t}\right)^{2}} \\
& =\sqrt{2+e^{2 t}+e^{-2 t}} \\
& =\sqrt{\left(e^{t}+e^{-t}\right)^{2}} \\
& =\left|e^{t}+e^{-t}\right| \\
& =e^{t}+e^{-t} \quad \text { since } e^{t}, e^{-t}>0 \text { for all } t .
\end{aligned}
$$

So, the mit tangent vector

$$
\begin{aligned}
T(t) & =\frac{\gamma^{\prime}(t)}{\left|\gamma^{\prime}(t)\right|} \\
& =\frac{1}{e^{t}+e^{-t}}\left\langle\sqrt{2}, e^{t},-e^{-t}\right\rangle \\
& =\frac{1}{e^{t}+e^{-t}}\left\langle\sqrt{2}, e^{t},-\frac{1}{e^{t}}\right\rangle \cdot \frac{e^{t}}{e^{t}} \\
& =\frac{1}{e^{2 t}+1}\left\langle\sqrt{2} e^{t}, e^{2 t},-1\right\rangle .
\end{aligned}
$$

Furthermore,

$$
\begin{aligned}
T^{\prime}(t) & =\frac{1}{e^{2 t}+1}\left\langle\sqrt{2} e^{t}, 2 e^{2 t}, 0\right\rangle-\frac{2 e^{2 t}}{\left(e^{2 t}+1\right)^{2}}\left\langle\sqrt{2} e^{t}, e^{2 t},-1\right\rangle \\
& =\frac{1}{\left(e^{2 t}+1\right)^{2}}\left(\left(e^{2 t}+1\right)\left\langle\sqrt{2} e^{t}, 2 e^{2 t}, 0\right\rangle-2 e^{2 t}\left\langle\sqrt{2} e^{t}, e^{2 t},-1\right\rangle\right) \\
& =\frac{1}{\left(e^{2 t}+1\right)^{2}}\left(\left\langle\sqrt{2} e^{3 t}+\sqrt{2} e^{t}, 2 e^{4 t}+2 e^{2 t}, 0\right\rangle-\left\langle 2 \sqrt{2} e^{3 t}, 2 e^{4 t},-2 e^{2 t}\right\rangle\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{\left(e^{2 t}+1\right)^{2}}\left\langle\sqrt{2} e^{t}-\sqrt{2} e^{3 t}, 2 e^{2 t}, 2 e^{2 t}\right\rangle \\
& =\frac{1}{\left(e^{2 t}+1\right)^{2}}\left\langle\sqrt{2} e^{t}\left(1-e^{2 t}\right), 2 e^{2 t}, 2 e^{2 t}\right\rangle
\end{aligned}
$$

and

$$
\begin{aligned}
\left|T^{\prime}(t)\right| & =\sqrt{\left(\frac{\sqrt{2} e^{t}\left(1-e^{2 t}\right)}{\left(e^{2 t}+1\right)^{2}}\right)^{2}+\left(\frac{2 e^{2 t}}{\left(e^{2 t}+1\right)^{2}}\right)^{2}+\left(\frac{2 e^{2 t}}{\left(e^{2 t}+1\right)^{2}}\right)^{2}} \\
& =\frac{1}{\left(e^{2 t}+1\right)^{2}} \sqrt{2 e^{2 t}\left(1-e^{2 t}\right)^{2}+4 e^{4 t}+4 e^{4 t}} \\
& =\frac{1}{\left(e^{2 t}+1\right)^{2}} \sqrt{2 e^{2 t}\left(1-2 e^{2 t}+e^{4 t}\right)+8 e^{4 t}} \\
& =\frac{1}{\left(e^{2 t}+1\right)^{2}} \sqrt{2 e^{2 t}-4 e^{4 t}+2 e^{6 t}+8 e^{4 t}} \\
& =\frac{1}{\left(e^{2 t}+1\right)^{2}} \sqrt{2 e^{2 t}+4 e^{4 t}+2 e^{6 t}} \\
& =\frac{1}{\left(e^{2 t}+1\right)^{2}} \sqrt{2 e^{2 t}\left(1+2 e^{2 t}+e^{4 t}\right)} \\
& =\frac{1}{\left(e^{2 t}+1\right)^{2}} \sqrt{2 e^{2 t}\left(1+e^{2 t}\right)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\sqrt{2} e^{t}\left(1+e^{2 t}\right)}{\left(e^{2 t}+1\right)^{2}} \\
& =\frac{\sqrt{2} e^{t}}{e^{2 t}+1}
\end{aligned}
$$

Thus, the unit normal vector

$$
\begin{aligned}
N(t) & =\frac{T^{\prime}(t)}{\left|T^{\prime}(t)\right|} \\
& =\frac{1}{\left(e^{2 t}+1\right)^{2}}\left\langle\sqrt{2} e^{t}\left(1-e^{2 t}\right), 2 e^{2 t}, 2 e^{2 t}\right\rangle \times \frac{e^{2 t}+1}{\sqrt{2} e^{t}} \\
& =\frac{1}{\sqrt{2} e^{t}\left(e^{2 t}+1\right)}\left\langle\sqrt{2} e^{t}\left(1-e^{2 t}\right), 2 e^{2 t}, 2 e^{2 t}\right\rangle .
\end{aligned}
$$

Also, by formula (9) in the book, the curvature

$$
\begin{aligned}
k(t) & =\frac{\left|T^{\prime}(t)\right|}{\left|\gamma^{\prime}(t)\right|} \\
& =\frac{\sqrt{2} e^{t}}{e^{2 t}+1} \cdot \frac{1}{e^{t}+e^{-t}} \\
& =\frac{\sqrt{2} e^{t}}{e^{3 t}+e^{t}+e^{t}+e^{-t}} \\
& =\frac{\sqrt{2} e^{t}}{e^{3 t}+2 e^{t}+e^{-t}}
\end{aligned}
$$

30-31 At what point does the curve have maximum curvature? What happens to the curvature as $x \rightarrow \infty$?
30. $y=\ln x$

$$
y=\ln x \Rightarrow y^{\prime}(x)=\frac{1}{x} \text { an } y^{\prime \prime}(x)=-\frac{1}{x^{2}}
$$

So by formula (II) in the book, the curvature

$$
\begin{aligned}
k(x) & =\frac{\left|y^{\prime \prime}(x)\right|}{\left[1+\left(y^{\prime}(x)\right)^{2}\right]^{3 / 2}} \\
& =\frac{\left.1-\frac{1}{x^{2}} \right\rvert\,}{\left[1+\left(\frac{1}{x}\right)^{2}\right]^{3 / 2}} \\
& =\frac{1 / x^{2}}{\left(1+1 / x^{2}\right)^{3 / 2}} \\
& =\frac{1}{x^{2}\left(\frac{x^{2}+1}{x^{2}}\right)^{3 / 2}} \\
& =\frac{1}{x^{2}\left(x^{2}+1\right)^{3 / 2}} \\
& =\frac{1}{\left(x^{2}\right)^{3 / 2}} \\
& =\frac{x}{\left(x^{2}+1\right)^{3 / 2}} \\
& =\frac{x}{\left(x^{2}+1\right)^{3 / 2}}
\end{aligned}
$$

To find point of maximum curvature, we need to fin the critical numbers

To find point of maximum curvature, we need to fin the critical numbers.

$$
\begin{aligned}
k^{\prime}(x) & =\frac{\left(x^{2}+1\right)^{3 / 2}-\frac{3}{2}(2 x)\left(x^{2}+1\right)^{1 / 2}(x)}{\left(x^{2}+1\right)^{3}} \\
& =\frac{\left(x^{2}+1\right)^{1 / 2}\left[\left(x^{2}+1\right)-3 x^{2}\right]}{\left(x^{2}+1\right)^{3}} \\
& =\frac{\left(x^{2}+1\right)^{1 / 2}\left(1-2 x^{2}\right)}{\left(x^{2}+1\right)^{3}}
\end{aligned}
$$

So $k(x)=0 \Rightarrow 1-2 x^{2}=0 \Rightarrow x= \pm \frac{1}{\sqrt{2}}$
$\Rightarrow x=\frac{1}{\sqrt{2}}$ since $-\frac{1}{\sqrt{2}}$ is not in the domain of y.

Also, $k^{\prime}(x)>0$ for $0<x<\frac{1}{\sqrt{2}}$ and $k^{\prime}(x)<0$ for $x>\frac{1}{\sqrt{2}}$
$\Rightarrow K(x)$ attains maximum value at $x=\frac{1}{\sqrt{2}}$.
(Altematielly: Compute $k^{\prime \prime}(x)$ to see that $k^{\prime \prime}\left(\frac{1}{\sqrt{2}}\right)<0$)
Moreover,

$$
\begin{aligned}
\lim _{x \rightarrow \infty} k(x) & =\lim _{x \rightarrow \infty} \frac{x}{\left(x^{2}+1\right)^{3 / 2}} \\
& =\lim _{x \rightarrow \infty} \frac{x}{x^{3}\left(1+\frac{1}{x^{2}}\right)^{3 / 2}} \\
& =\lim _{x \rightarrow \infty} \frac{1 / x^{2}}{\left(1+\frac{1}{x^{2}}\right)^{3 / 2}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\lim _{x \rightarrow \infty} 1 / x^{2}}{\left(1+\lim _{x \rightarrow \infty} \frac{1}{x^{2}}\right)^{3 / 2}} \\
& =\frac{0}{(1+0)^{3 / 2}}=0 .
\end{aligned}
$$

