1-8 Find (a) the curl and (b) the divergence of the vector field.

1. $\mathbf{F}(x, y, z)=\underbrace{x y^{2} z^{2}}_{P} \mathbf{i}+\underbrace{x^{2} y z^{2}}_{Q} \mathbf{j}+\underbrace{x^{2} y^{2} z}_{R} \mathbf{k}$
(a) The curl of $F$ is defined as

$$
\begin{aligned}
& \operatorname{curl} F=\left|\begin{array}{lll}
i & j & K \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
P & Q & R
\end{array}\right| \\
& =\left|\begin{array}{ccc}
i & j & k \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
x y^{2} z^{2} & x^{2} y z^{2} & x^{2} y^{2} z
\end{array}\right| \\
& =\left(\frac{\partial}{\partial y}\left(x^{2} y^{2} z\right)-\frac{\partial}{\partial z}\left(x^{2} y z^{2}\right)\right) i-\left(\frac{\partial}{\partial x}\left(x^{2} y^{2} z\right)-\frac{\partial}{\partial z}\left(x y^{2} z^{2}\right)\right) j \\
& +\left(\frac{\partial}{\partial x}\left(x^{2} y z^{2}\right)-\frac{\partial}{\partial y}\left(x y^{2} z^{2}\right)\right) k \\
& =\left(2 x^{2} y z-2 x^{2} y z\right) i-\left(2 x y^{2} z-2 x y^{2} z\right) j+\left(2 x y z^{2}-2 x y z^{2}\right) k \\
& =0 i-(0) j+0 k \\
& =0 .
\end{aligned}
$$

(b) The divergence of $F$

$$
\begin{aligned}
\operatorname{div} F & =\nabla \cdot F \\
& =\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) \cdot(P, Q, R) \\
& =\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial \tau}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial \tau} \\
& =\frac{\partial}{\partial x}\left(x y^{2} z^{2}\right)+\frac{\partial}{\partial y}\left(x^{2} y z^{2}\right)+\frac{\partial}{\partial z}\left(x^{2} y^{2} z\right) \\
& =y^{2} z^{2}+x^{2} z^{2}+x^{2} y^{2} .
\end{aligned}
$$

13-18 Determine whether or not the vector field is conservative. If it is conservative, find a function $f$ such that $\mathbf{F}=\nabla f$.
16. $\mathbf{F}(x, y, z)=\mathbf{i}+\sin z \mathbf{j}+y \cos z \mathbf{k}$

Since the domain of $F$ is $\mathbb{R}^{3}$ and the components of $F$ have continuous parting denvatives, it suffices to show $\operatorname{curl} f=0$.
But

$$
\begin{aligned}
\operatorname{con} f F & =\left|\begin{array}{ccc}
i & j & k \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
1 & \sin z & y \cos z
\end{array}\right| \\
& =i\left(\frac{\partial}{\partial y}(y \cos z)-\frac{\partial}{\partial z}(\sin z)\right)-j\left(\frac{\partial}{\partial x}(y \cos z)-\frac{\partial}{\partial z}(1)\right)+k\left(\frac{\partial}{\partial x}(\sin z)-\frac{\partial}{\partial y}(1)\right) \\
& =i(\cos z-\cos z)-j(0-0)+k(0-0) \\
& =0 .
\end{aligned}
$$

Hence, $F$ is conservative by Theorem 4 .
Now, we look for $f$ such that $\nabla f=F$.

$$
\begin{aligned}
& \Rightarrow\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)=(1, \sin t, y \cos z) \\
& \Rightarrow \frac{\partial f}{\partial x}=1, \frac{\partial f}{\partial y}=\sin z, \frac{\partial f}{\partial z}=y \cos z
\end{aligned}
$$

$$
\Rightarrow \underbrace{\frac{\partial f}{\partial x}=1}_{\text {I }}, \underbrace{\frac{\partial f}{\partial y}=\sin z}_{\text {II }}, \underbrace{\frac{\partial f}{\partial z}=y \cos z}_{\text {III }}
$$

(I)

$$
\begin{aligned}
\Rightarrow f(x, y, z) & =\int 1 \partial x \\
& =x+g(y, z)
\end{aligned}
$$

Differenting wort $y$ and comparing with $(\mathbb{I})$,

$$
\left.\begin{array}{rl}
f_{y}(x, y, z) & =g_{y}(y, z)
\end{array}\right)=\sin z \quad \text { g } \begin{aligned}
& =\int \sin z \partial y \\
& =y \sin z+h(z)
\end{aligned}
$$

Thus,

$$
f(x, y, z)=x+y \sin z+h(z) \text {. }
$$

Finally, differentiating $f$ and equatrig to (III),

$$
\begin{aligned}
f_{z}(x, y, z) & =y \cos z+h^{\prime}(z)=y \cos z \\
& \Rightarrow h^{\prime}(z)=0 \Rightarrow h(z)=c, a \text { constant }
\end{aligned}
$$

Hence,

$$
f(x, y, z)=x+y \sin z+c
$$

is the required $f$.

23-29 Prove the identity, assuming that the appropriate partial derivatives exist and are continuous. If $f$ is a scalar field and $\mathbf{F}, \mathbf{G}$ are vector fields, then $f \mathbf{F}, \mathbf{F} \cdot \mathbf{G}$, and $\mathbf{F} \times \mathbf{G}$ are defined by

$$
\begin{aligned}
(f \mathbf{F})(x, y, z) & =f(x, y, z) \mathbf{F}(x, y, z) \\
(\mathbf{F} \cdot \mathbf{G})(x, y, z) & =\mathbf{F}(x, y, z) \cdot \mathbf{G}(x, y, z) \\
(\mathbf{F} \times \mathbf{G})(x, y, z) & =\mathbf{F}(x, y, z) \times \mathbf{G}(x, y, z)
\end{aligned}
$$

26. $\operatorname{curl}(f \mathbf{F})=f \operatorname{curl} \mathbf{F}+(\nabla f) \times \mathbf{F}$

For convenience, let $F=P i+Q j+R k$. Then $f F=f P i+f Q j+f R K$. Thus, by definitions,

$$
\begin{aligned}
\operatorname{curl}(f F)= & \left|\begin{array}{lll}
i & j & k \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
f P & f Q & f R
\end{array}\right| \\
= & i\left(\frac{\partial}{\partial y}(f R)-\frac{\partial}{\partial z}(f Q)\right)-j\left(\frac{\partial}{\partial x}(f R)-\frac{\partial}{\partial z}(f P)\right) \\
& +k\left(\frac{\partial}{\partial x}(f Q)-\frac{\partial}{\partial y}(f P)\right)
\end{aligned}
$$

Using Product Rule

$$
\begin{aligned}
&=i\left(f \frac{\partial R}{\partial y}+R \frac{\partial f}{\partial y}-f \frac{\partial Q}{\partial z}-Q \frac{\partial f}{\partial z}\right)-j\left(f \frac{\partial R}{\partial x}+R \frac{\partial f}{\partial x}-f \frac{\partial P}{\partial z}-P \frac{\partial f}{\partial z}\right) \\
&+K\left(f \frac{\partial Q}{\partial x}+Q \frac{\partial f}{\partial x}-f \frac{\partial P}{\partial y}-P \frac{\partial f}{\partial y}\right) \\
&=i f\left(\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z}\right)+i\left(R \frac{\partial f}{\partial y}-Q \frac{\partial f}{\partial z}\right)-j f\left(\frac{\partial R}{\partial x}-\frac{\partial P}{\partial z}\right)-j\left(R \frac{\partial f}{\partial x}-P \frac{\partial f}{\partial z}\right) \\
&+K f\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right)+K\left(Q \frac{\partial f}{\partial x}-P \frac{\partial f}{\partial y}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =i f\left(\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z}\right)-j f\left(\frac{\partial R}{\partial x}-\frac{\partial P}{\partial z}\right)+K f\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \\
& \left.+i\left(R \frac{\partial f}{\partial y}-Q \frac{\partial f}{\partial z}\right)-j\left(R \frac{\partial f}{\partial x}-P \frac{\partial f}{\partial z}\right)+K\left(Q \frac{\partial f}{\partial x}-P \frac{\partial f}{\partial y}\right)\right) \\
& =f\left[i\left(\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z}\right)-j\left(\frac{\partial R}{\partial x}-\frac{\partial P}{\partial z}\right)+K\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right)\right]+\left|\begin{array}{ccc}
i & j & k \\
\frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial z} \\
P & Q & R
\end{array}\right| \\
& =f\left|\begin{array}{ccc}
i & j & K \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
P & Q & R
\end{array}\right|+\left|\begin{array}{ccc}
i & j & k \\
\frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial z} \\
P & Q & R
\end{array}\right| \\
& =f(\nabla \times F)+\nabla f \times F \\
& =f \operatorname{curl} F+\nabla f \times F \text { as required. }
\end{aligned}
$$

30-32 Let $\mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ and $r=|\mathbf{r}|$.
30. Verify each identity.
(a) $\nabla \cdot \mathbf{r}=3$

By dejuition,

$$
\begin{aligned}
\nabla \cdot Y & =\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) \cdot(x, y, z) \\
& =\frac{\partial x}{\partial x}+\frac{\partial y}{\partial y}+\frac{\partial z}{\partial z} \\
& =1+1+1
\end{aligned}
$$

$$
=3
$$

(b) $\nabla \cdot(r \mathbf{r})=4 r$

By dejinition,

$$
\begin{aligned}
& \nabla \cdot(r \gamma)=\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) \cdot(x \gamma, y r, z r) \\
& =\frac{\partial}{\partial x}(x \gamma)+\frac{\partial}{\partial y}(y r)+\frac{\partial}{\partial z}(z r) \\
& =x \frac{\partial r}{\partial x}+r+y \frac{\partial r}{\partial y}+r+z \frac{\partial r}{\partial z}+r \\
& r=\sqrt{x^{2}+y^{2}+z^{2}} \\
& \Rightarrow \gamma_{x}=\frac{x}{r} \\
& x_{y}=\frac{y}{\gamma} \\
& \gamma_{z}=\frac{z}{\gamma} \\
& =3 \gamma+\frac{x^{2}+y^{2}+z^{2}}{\gamma} \\
& =3 r+\frac{r^{2}}{r} \\
& =3 \gamma+\gamma \\
& =4 r \text { as requied. }
\end{aligned}
$$

(c) $\nabla^{2} r^{3}=12 r$

By definition,

$$
\nabla^{2} \gamma^{3}=\nabla \cdot \nabla r^{3}
$$

But

$$
\begin{aligned}
& \text { But } \\
& \frac{\partial}{\partial x} r^{3}=3 r^{2} \frac{\partial r}{\partial x}=3 r^{2} \cdot \frac{x}{r}=3 r x \\
& \ldots r^{3} \lambda r-2 r^{2} \cdot \underline{y}=3 r y
\end{aligned}
$$

$$
\begin{aligned}
\frac{\partial}{\partial x} r^{3} & =3 r^{3} \frac{\partial r}{\partial y}=3 r^{2} \cdot \frac{y}{r}=3 r y \\
\frac{\partial r^{3}}{\partial z} & =3 r^{2} \frac{\partial r}{\partial z}=3 r^{2} \cdot \frac{z}{r}=3 r z \\
\Rightarrow \nabla r^{3} & =3 r x i+3 r y j+3 r z k \\
& =3 r(x i+y j+z k) \\
& =3 r r
\end{aligned}
$$

So

$$
\begin{aligned}
\nabla^{2} \gamma^{3} & =\nabla \cdot \nabla \gamma^{3} \\
& =\nabla \cdot(3 \gamma r) \\
& =3(\nabla \cdot(\gamma \gamma)) \\
& =3(4 \gamma) \quad \text { by part (b) } \\
& =12 r .
\end{aligned}
$$

