3–8

- (a) Sketch the plane curve with the given vector equation.
- (b) Find $\mathbf{r}'(t)$.
- (c) Sketch the position vector $\mathbf{r}(t)$ and the tangent vector $\mathbf{r}'(t)$ for the given value of *t*.

4.
$$\mathbf{r}(t) = \langle t^2, t^3 \rangle, \quad t = 1$$

(i) = $\langle t^2, t^3 \rangle$

Since $\mathbf{y} = \langle \mathbf{x}, \mathbf{y} \rangle$, we have $\langle \mathbf{x}, \mathbf{y} \rangle = \langle t^2, t^3 \rangle$ $\Rightarrow \mathbf{x} = t^2$, $\mathbf{y} = t^3 \Rightarrow t = y'^3$ $\Rightarrow \mathbf{x} = t^2 |_{t=y'^3}$ $= y^{2/3}$

So, the plane curve is the graph of $x = y^{2/3}$

b By definitions $\mathbf{Y}'(t) = \langle (t^2)', (t^3)' \rangle$ $= \langle 2t, 3t \rangle$.

9–16 Find the derivative of the vector function.

9.
$$\mathbf{r}(t) = \left\langle \sqrt{t-2}, 3, 1/t^2 \right\rangle$$

10. $\mathbf{r}(t) = \left\langle e^{-t}, t - t^3, \ln t \right\rangle$

17–20 Find the unit tangent vector $\mathbf{T}(t)$ at the point with the given value of the parameter *t*.

17.
$$\mathbf{r}(t) = \langle t^2 - 2t, 1 + 3t, \frac{1}{3}t^3 + \frac{1}{2}t^2 \rangle, \quad t = 2$$

 $\mathbf{r}'|t) = \langle 2t - t, 3, t^2 + t \rangle$
 $\Rightarrow \mathbf{r}'(2) = \langle 2t - t, 3, t^2 + t \rangle \Big|_{t=2} = \langle 2, 3, 6 \rangle.$
 $\Rightarrow |\mathbf{r}'(2)| = \sqrt{2^2 + 3^2 + 6^2} = \sqrt{49} = 7$
Hence, the unit tangent vector at $t=2$ is
 $\mathbf{T}(2) = \frac{\mathbf{r}'(2)}{|\mathbf{r}'(2)|}$
 $= \frac{1}{7} \langle 2, 3, 6 \rangle.$

21. If
$$\mathbf{r}(t) = \langle t, t^2, t^3 \rangle$$
, find $\mathbf{r}'(t)$, $\mathbf{T}(1)$, $\mathbf{r}''(t)$, and $\mathbf{r}'(t) \times \mathbf{r}''(t)$.
 $\mathbf{r}'(t) = \langle t, 2t, 3t^3 \rangle \implies \mathbf{r}'(t) = \langle t, 2, 3 \rangle \implies |\mathbf{r}'(t)| = \sqrt{t^2 + 2^2 + 3^2} = \sqrt{t^4}$
So
 $\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|} = \frac{1}{\sqrt{t^4}} \langle t_1 2, 3 \rangle$.

Afso,

$$Y'(t) = \langle 0, 2, 6t \rangle$$

$$\Rightarrow Y'(t) \times Y''(t) = \begin{cases} 1 & J & K \\ 1 & 2t & 3t^{2} \\ 0 & 2 & 6t \end{cases}$$

$$= (12t^{2} - 6t^{2})i - (6t - 0)j + (2 - 0)K$$

$$= 6t^{2}i - 6tj + 2K$$

$$= \langle 6t^{2}j - 6t, 2 \rangle$$

23–26 Find parametric equations for the tangent line to the curve with the given parametric equations at the specified point.

26. $x = \sqrt{t^2 + 3}$, $y = \ln(t^2 + 3)$, z = t; $(2, \ln 4, 1)$ $\chi'(t) = \frac{t}{\sqrt{t^2 + 3}}$, $\chi'(t) = \frac{2t}{t^2 + 3}$, Z'(t) = 1. Vector equation of the curve: $\Upsilon(t) = \langle \sqrt{t^2 + 3}, \ln(t^2 + 3), t \rangle$ $\Rightarrow \chi'(t) = \langle \frac{t}{\sqrt{t^2 + 3}}, \frac{2t}{t^2 + 3}, 1 \rangle$ With Z = t then at $(2, \ln 4, 1)$, we have t = 1. Thus, a direction vector of the tangent line is $\chi = \chi'(1) = \langle \frac{1}{\sqrt{1 + 3}}, \frac{2}{1 + 3}, 1 \rangle = \langle \frac{1}{3}, \frac{1}{2}, 1 \rangle$ So equation of the line is $\chi = \chi_0 + t \sqrt{1 + 3}$

$$= \langle 2, ln4, i \rangle + t \langle \frac{1}{2}, \frac{1}{2}, i \rangle$$

= $\langle 2 + \frac{1}{2}, ln4 + \frac{1}{2}, 1 + t \rangle$
$$\Rightarrow \chi = 2 + \frac{1}{2}, y = ln4 + \frac{1}{2}, 2 = 1 + t \text{ are the parametric equations.}$$