3-8
(a) Sketch the plane curve with the given vector equation.
(b) Find $\mathbf{r}^{\prime}(t)$.
(c) Sketch the position vector $\mathbf{r}(t)$ and the tangent vector $\mathbf{r}^{\prime}(t)$ for the given value of t.
4. $\mathbf{r}(t)=\left\langle t^{2}, t^{3}\right\rangle, \quad t=1$
(a) $r(1)=\left\langle t^{2}, t^{3}\right\rangle$

Since $r=\langle x, y\rangle$, we have

$$
\begin{aligned}
& \langle x, y\rangle=\left\langle t^{2}, t^{3}\right\rangle \\
& \Rightarrow x=t^{2}, y=t^{3} \Rightarrow t=y^{1 / 3} \\
& \Rightarrow x=\left.t^{2}\right|_{t=y^{1 / 3}} \\
& =y^{2 / 3}
\end{aligned}
$$

So, the plane curve is the graph of $x=y^{2 / 3}$

(b) By defuitions,

$$
\begin{aligned}
\gamma^{\prime}(t) & =\left\langle\left(t^{2}\right)^{\prime},\left(t^{3}\right)^{\prime}\right\rangle \\
& =\langle 2 t, 3 t\rangle
\end{aligned}
$$

(C) $\gamma^{\prime}(1)=\left.\langle 2 t, 3 t\rangle\right|_{t=1}=\langle 2,3\rangle$.

9-16 Find the derivative of the vector function.
9. $\mathbf{r}(t)=\left\langle\sqrt{t-2}, 3,1 / t^{2}\right\rangle$
10. $\mathbf{r}(t)=\left\langle e^{-t}, t-t^{3}, \ln t\right\rangle$
(iD) $\gamma(t)=\left\langle e^{-t}, t-t^{3}, \ln t\right\rangle$
By definition,

$$
\begin{aligned}
r^{\prime}(t) & =\left\langle\left(e^{-t}\right)^{\prime},\left(t-t^{3}\right)^{\prime},(\ln t)^{\prime}\right\rangle \\
& =\left\langle-e^{-t}, \quad 1-3 t^{2}, \frac{1}{t}\right\rangle
\end{aligned}
$$

17-20 Find the unit tangent vector $\mathbf{T}(t)$ at the point with the given value of the parameter t.

$$
\begin{aligned}
& \text { 17. } \mathbf{r}(t)=\left\langle t^{2}-2 t, 1+3 t, \frac{1}{3} t^{3}+\frac{1}{2} t^{2}\right\rangle, \quad t=2 \\
& r^{\prime}(t)=\left\langle 2 t-t, 3, t^{2}+t\right\rangle \\
& \Rightarrow r^{\prime}(2)=\left.\left\langle 2 t-t, 3, t^{2}+t\right\rangle\right|_{t=2}=\langle 2,3,6\rangle \\
& \Rightarrow\left|r^{\prime}(2)\right|=\sqrt{2^{2}+3^{2}+6^{2}}=\sqrt{49}=7
\end{aligned}
$$

Hence, the mint tangent vector at $t=2$ is

$$
\begin{aligned}
T(2) & =\frac{\gamma^{\prime}(2)}{\left|\gamma^{\prime}(2)\right|} \\
& =\frac{1}{7}\langle 2,3,6\rangle
\end{aligned}
$$

21. If $\mathbf{r}(t)=\left\langle t, t^{2}, t^{3}\right\rangle$, find $\mathbf{r}^{\prime}(t), \mathbf{T}(1), \mathbf{r}^{\prime \prime}(t)$, and $\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)$.

$$
r^{\prime}(t)=\left\langle 1,2 t, 3 t^{2}\right\rangle \Rightarrow r^{\prime}(1)=\langle 1,2,3\rangle \Rightarrow\left|r^{\prime}(1)\right|=\sqrt{1^{2}+2^{2}+3^{2}}=\sqrt{14}
$$

So

$$
T(1)=\frac{\gamma^{\prime}(1)}{\left|\gamma^{\prime}(1)\right|}=\frac{1}{\sqrt{14}}\langle 1,2,3\rangle .
$$

Also,

$$
\begin{aligned}
\gamma^{\prime \prime}(t) & =\langle 0,2,6 t\rangle \\
\Rightarrow \gamma^{\prime}(t) \times \gamma^{\prime \prime}(t) & =\left|\begin{array}{ccc}
i & j & k \\
1 & 2 t & 3 t^{2} \\
0 & 2 & 6 t
\end{array}\right| \\
& =\left(12 t^{2}-6 t^{2}\right) i-(6 t-0) j+(2-0) k \\
& =6 t^{2} i-6 t j+2 k \\
& =\left\langle 6 t^{2},-6 t, 2\right\rangle .
\end{aligned}
$$

23-26 Find parametric equations for the tangent line to the curve with the given parametric equations at the specified point.
26. $x=\sqrt{t^{2}+3}, \quad y=\ln \left(t^{2}+3\right), \quad z=t ; \quad(2, \ln 4,1)$

$$
x^{\prime}(t)=\frac{t}{\sqrt{t^{2}+3}}, \quad y^{\prime}(t)=\frac{2 t}{t^{2}+3}, \quad z^{\prime}(t)=1 .
$$

Vector equativi of the curve:

$$
\begin{gathered}
\gamma(t)=\left\langle\sqrt{t^{2}+3}, \ln \left(t^{2}+3\right), t\right\rangle \\
\Rightarrow \gamma^{\prime}(t)=\left\langle\frac{t}{\sqrt{t^{2}+3}}, \frac{2 t}{t^{2}+3}, 1\right\rangle
\end{gathered}
$$

with $z=t$ then at $(2, \ln 4,1)$, we have $t=1$.
This, a direction vector of the tangent line is

$$
v=r^{\prime}(1)=\left\langle\frac{1}{\sqrt{1+3}}, \frac{2}{1+3}, 1\right\rangle=\left\langle\frac{1}{2}, \frac{1}{2}, 1\right\rangle
$$

So equation of the line is

$$
r=r_{0}+t v
$$

$$
\begin{aligned}
& =\langle 2, \ln 4,1\rangle+t\left\langle\frac{1}{2}, \frac{1}{2}, 1\right\rangle \\
& =\left\langle 2+\frac{t}{2}, \ln 4+\frac{t}{2}, 1+t\right\rangle
\end{aligned}
$$

$\Rightarrow x=2+\frac{t}{2}, y=\ln 4+\frac{t}{2}, z=1+t$ are the parametric equations.

