4-6 Find the directional derivative of f at the given point in the direction indicated by the angle θ.
4. $f(x, y)=x y^{3}-x^{2}, \quad(1,2), \quad \theta=\pi / 3$

A unit vector in the direction with angle $\theta=\pi / 3$ is

$$
\begin{aligned}
u & =\cos (\pi / 3) i+\sin (\pi / 3) j \\
& =\frac{1}{2} i+\frac{\sqrt{3}}{2} j
\end{aligned}
$$

Also, the gradient vector

$$
\nabla f=\left\langle y^{3}-2 x, \quad 3 x y^{2}\right\rangle \Rightarrow \nabla f(1,2)=\left\langle 2^{3}-2(1), 3(1)\left(2^{2}\right)\right\rangle=\langle 6,12\rangle
$$

Hence, the directional derivative at $(1,2)$

$$
\begin{aligned}
\nabla f \cdot u & =\langle 6,12\rangle \cdot\left\langle\frac{1}{2}, \frac{\sqrt{3}}{2}\right\rangle \\
& =3+6 \sqrt{3}
\end{aligned}
$$

7-10
(a) Find the gradient of f.
(b) Evaluate the gradient at the point P.
(c) Find the rate of change of f at P in the direction of the vector \mathbf{u}.
7. $f(x, y)=x / y, \quad P(2,1), \quad \mathbf{u}=\frac{3}{5} \mathbf{i}+\frac{4}{5} \mathbf{j}$
(a) The gradient of f

$$
\nabla f=\left\langle 1 / y,-x / y^{2}\right\rangle
$$

(b) The gradient evaluated at the point $P(2,1)$

$$
\nabla f(2,1)=\left\langle 1 / 1,-2 / 1^{2}\right\rangle=\langle 1,-2\rangle
$$

(c) The required rate of change is the directional derwatuil of f along the unit vector u at the point $P(2,1)$.

$$
\begin{aligned}
\nabla f(2,1) \cdot u & =\langle 1,-2\rangle \cdot\left\langle\frac{3}{5}, \frac{4}{5}\right\rangle \\
& =\frac{3}{5}-\frac{8}{5} \\
& =\frac{-5}{5} \\
& =-1
\end{aligned}
$$

21-26 Find the maximum rate of change of f at the given point and the direction in which it occurs.
21. $f(x, y)=4 y \sqrt{x}, \quad(4,1)$

The maximum rate of change of f occurs in the direction of the gradient vector ∇f and is the directorial derivative of f along ∇f.
ie;

$$
\nabla f \cdot u=\nabla f \cdot \frac{\nabla f}{|\nabla f|}=\frac{|\nabla f|^{2}}{|\nabla f|}=|\nabla f|
$$

Now,

$$
\begin{aligned}
& \text { Now, } \\
& \nabla f=\left\langle\frac{2 y}{\sqrt{x}}, 4 \sqrt{x}\right\rangle \Rightarrow \nabla f(4,1)=\left\langle\frac{2(1)}{\sqrt{4}}, 4 \sqrt{4}\right\rangle=\langle 1,8\rangle \text { is } a
\end{aligned}
$$

direction of maximum rate of change at the point $(4,1)$.
$\Rightarrow|\nabla f|=\sqrt{1+8^{2}}=\sqrt{65}$ is the maximum rate of change of f at $(4,1)$.
32. The temperature at a point (x, y, z) is given by

$$
T(x, y, z)=200 e^{-x^{2}-3 y^{2}-9 z^{2}}
$$

where T is measured in ${ }^{\circ} \mathrm{C}$ and x, y, z in meters.
(a) Find the rate of change of temperature at the point $P(2,-1,2)$ in the direction toward the point $(3,-3,3)$.
(b) In which direction does the temperature increase fastest at P ?
(c) Find the maximum rate of increase at P.
(a) Let $Q=(3,-3,3)$. Then

$$
u=\frac{\overrightarrow{P Q}}{|\overrightarrow{P Q}|}=\frac{\langle 3-2,-3+1,3-2\rangle}{|\langle 1,-2,1\rangle|}=\frac{1}{\sqrt{6}}\langle 1,-2,1\rangle
$$

$$
\begin{aligned}
\text { Also, } \\
\qquad \begin{aligned}
\nabla T & =\langle-2 x,-6 y,-18 z\rangle 200 e^{-x^{2}-3 y^{2}-9 z^{2}} \\
& =\langle-x,-3 y,-9 z\rangle 400 e^{-x^{2}-3 y^{2}-9 z^{2}} \\
\Rightarrow \nabla T(2,-1,2) & =\langle-2,3,-18\rangle 400 e^{-4-3-36} \\
& =\langle-2,3,-18\rangle 400 e^{-43}
\end{aligned}
\end{aligned}
$$

Hence, the rate of change of the temperature at $P(2,-1,2)$ in the direction toward the point $(3,-3,3)$ is

$$
\begin{aligned}
\nabla f(2,-1,2) \cdot u & =\langle-2,3,-18\rangle 400 e^{-43} \cdot\langle 1,-2,1\rangle \frac{1}{\sqrt{6}} \\
& =\frac{(-2-6-18) 400 e^{-43}}{\sqrt{6}} \\
& =\frac{(-26) 400 e^{-43}}{\sqrt{6}} \\
& =-10400 \quad 0,1
\end{aligned}
$$

$$
=\frac{-10400}{\sqrt{6} e^{43}}{ }^{\circ} \mathrm{C} / \mathrm{m}
$$

(b) The temperature increases fastest in the direction of the gradient vector

$$
\begin{aligned}
& \nabla T(2,-1,2)=\langle-2,3,-18\rangle 400 e^{-43} \\
&=\langle-2,3,-18\rangle \quad \text { since a scalar multiple of a vector does not } \\
& \text { change its direction. }
\end{aligned}
$$

(C) The maximum rate of change at P is

$$
\begin{aligned}
|\nabla T(2,-1,2)| & =\sqrt{\left[(-2)^{2}+3^{2}+(-18)^{2}\right]\left(400 e^{-43}\right)^{2}} \\
& =400 e^{-43} \sqrt{4+9+324} \\
& =400 e^{-43} \sqrt{337}{ }^{\circ} \mathrm{C} / \mathrm{m}
\end{aligned}
$$

41-46 Find equations of (a) the tangent plane and (b) the normal line to the given surface at the specified point.
41. $2(x-2)^{2}+(y-1)^{2}+(z-3)^{2}=10$,
(6) Let $F(x, y, z)=2(x-2)^{2}+(y-1)^{2}+(z-3)^{2}-10$. Then
$\nabla F=\langle 4(x-2), 2(y-1), 2(z-3)\rangle$ is a normal to the tangent plane.

$$
\Rightarrow \nabla F(3,3,5)=\langle 4(3-2), 2(3-1), 2(5-3)\rangle=\langle 4,4,4\rangle
$$

Thus, equation of the tangent plane at $(3,3,5)$ is

$$
4(x-3)+4(y-3)+4(z-5)=0
$$

$$
\begin{aligned}
& \Rightarrow 4 x-12+4 y-12+4 z-20=0 \\
& \Rightarrow 4 x+4 y+4 z=44 \\
& \Rightarrow x+y+z=11
\end{aligned}
$$

(b) Equation of the normal line is

$$
\begin{aligned}
\gamma & =\gamma_{0}+t v \\
& =\langle 3,3,5\rangle+t\langle 4,4,4\rangle \\
& =\langle 3+4 t, 3+4 t, 5+4 t\rangle
\end{aligned}
$$

Or the parametric equations

$$
x=3+4 t, y=3+4 t, z=5+4 t
$$

49. If $f(x, y)=x y$, find the gradient vector $\nabla f(3,2)$ and use it to find the tangent line to the level curve $f(x, y)=6$ at the point (3, 2). Sketch the level curve, the tangent line, and the gradient vector.

$$
\nabla f=\langle y, x\rangle \Rightarrow \nabla f(3,2)=\langle 2,3\rangle
$$

So

$$
\begin{aligned}
& 2(x-3)+3(y-2)=0 \\
\Rightarrow & 2 x+3 y=12
\end{aligned}
$$

is the tangent line to the level curve $f(x, y)=6$ at the point $(3,2)$.
Also, the level curve $f(x, y)=6 \Rightarrow x y=6 \Rightarrow y=\frac{6}{x}$

