2-5 Find a vector equation and parametric equations for the line.
4. The line through the point $(0,14,-10)$ and parallel to the line $x=-1+2 t, y=6-3 t, z=3+9 t$
Here, a vector parallel to the line is $v=\langle 2,-3,9\rangle$.
Thus, a vector equation of the line though $(0,14,-10)=v_{0}$

$$
\begin{aligned}
\gamma & =\gamma_{0}+t v \\
& =\langle 0,14,-10\rangle+t\langle 2,-3,9\rangle \\
& =\langle 2 t, 14-3 t,-10+9 t\rangle \\
& =2 t i+(14-3 t) j+(-10+9 t) k
\end{aligned}
$$

So, letting $r=\langle x, y, z\rangle$, we get the parametric equation

$$
x=2 t, y=14-3 t, z=-10+9 t .
$$

6-12 Find parametric equations and symmetric equations for the line.
10. The line through $(2,1,0)$ and perpendicular to both $\mathbf{i}+\mathbf{j}$ and $\mathbf{j}+\mathbf{k}$
Here, a vector parallel to the line is

$$
v=(i+j) \times(j+k)
$$

$$
\begin{aligned}
& =\left|\begin{array}{ccc}
i & j & k \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right| \\
& =(1-0) i-(1-0) j+(1-0) k \\
& =i-j+k
\end{aligned}
$$

A vector equation of the line is

$$
\begin{aligned}
r & =\langle 2,1,0\rangle+t\langle 1,-1,1\rangle \\
& =\langle 2+t, 1-t, t\rangle \\
& =(2+t)_{i}+(1-t)_{j}+t k
\end{aligned}
$$

Thus, a parametric equation of the line is

$$
x=2+t, y=1-t, z=t
$$

and a symmetric equation for the line is

$$
x-2=1-y=z \text {. (by solving for } t \text { in each equation above) }
$$

19-22 Determine whether the lines L_{1} and L_{2} are parallel, skew, or intersecting. If they intersect, find the point of intersection.
19. $L_{1}: x=3+2 t, \quad y=4-t, \quad z=1+3 t$

$$
L_{2}: x=1+4 s, \quad y=3-2 s, \quad z=4+5 s
$$

Direction vector for $L_{1} V_{1}=\langle 2,-1,1\rangle$.
Direction vector for $L_{2} V_{2}=\langle 4,-2,5\rangle$.

If L_{1} and L_{2} are parol, then
$V_{1}=\alpha V_{2}$ for some $\alpha \in R$.

$$
\begin{aligned}
& \Rightarrow \quad\langle 2,-1,1\rangle=\alpha\langle 4,-2,5\rangle \\
& \Rightarrow \quad 2=4 \alpha,-1=-2 \alpha, 1=5 \alpha \text { (Impossible!!!) }
\end{aligned}
$$

$\Rightarrow L_{1}$ and L_{2} are not parallel.
on the other had, if L_{1} and L_{2} intersect, then we can find $s, t \in \mathbb{R}$ Such that

$$
x_{1}=x_{2}, \quad y_{1}=y_{2} \quad \text { and } z_{1}=z_{2}
$$

ie,

$$
\begin{align*}
& 3+2 t=1+45 \tag{1}\\
& 4-t=3-25 \tag{2}\\
& 1+3 t=4+55 \tag{3}
\end{align*}
$$

Solve sinnettaneonsly:
(1) +2 (2):

$$
\begin{aligned}
3+2 t & =1+45 \\
8-2 t & =6-45 \\
11 & =7(\text { Impossible !! })
\end{aligned}
$$

\Rightarrow We cannot find s and t
$\Rightarrow L_{1}$ and L_{2} do not intersect.
Conclusion: since L_{1} and L_{2} are not parallel or intersect, it follows they are skew (don't lie on the same plane)

23-40 Find an equation of the plane.
27. The plane through the point $(1,-1,-1)$ and parallel to the plane $5 x-y-z=6$
A normal vector to the plane $5 x-y-z=6$ is $n=\langle 5,-1,-1\rangle$.
Since the required plane is parallel to this plane, a vector equation to the plane is

$$
\begin{aligned}
& n \cdot\left(\gamma-\gamma_{0}\right)=0 \\
\Rightarrow & \langle 5,-1,-1\rangle \cdot(\langle x, y, z\rangle-\langle 1,-1,-1\rangle)=0 \\
\Rightarrow & \langle 5,-1,-1\rangle \cdot\langle x-1, y+1, z+1\rangle=0 \\
\Rightarrow & 5(x-1)-1(y+1)-1(z+1)=0 \\
\Rightarrow & 5 x-5-y-1-z-1=0 \\
\Rightarrow & 5 x-y-z-7=0
\end{aligned}
$$

which is the require equation of the plane.

51-56 Determine whether the planes are parallel, perpendicular, or neither. If neither, find the angle between them. (Round to one decimal place.)
51. $x+4 y-3 z=1, \quad-3 x+6 y+7 z=0$

Let n_{1} be a normal vector to the plane $x+4 y-3 z=1$ and n_{2}, a normal to $-3 x+6 y+7 z=0$.
Then

$$
n_{1}=\langle 1,4,-3\rangle \text { and } n_{2}=\langle-3,6,7\rangle
$$

If the two planes are parallel, then so are their normals.

But

$$
\begin{aligned}
& n_{1}=\alpha n_{2} \\
\Rightarrow & \langle 1,4,-3\rangle=\alpha\langle-3,6,7\rangle \\
\Rightarrow & 1=-3 \alpha, 4=6 \alpha,-3=7 \alpha \quad(\text { impossible })
\end{aligned}
$$

\Rightarrow The planes are not parallel.
However,

$$
\begin{aligned}
& \text { wever, }=\langle 1,4,-3\rangle \cdot\langle-3,6,7\rangle \\
& \begin{aligned}
n_{1} \cdot n_{2} & =\langle 1 \\
& =-3+24-21 \\
& =0
\end{aligned}
\end{aligned}
$$

\Rightarrow The planes are orthogonal.

59-60 Find symmetric equations for the line of intersection of the planes.
59. $5 x-2 y-2 z=1, \quad 4 x+y+z=6$

Assuming the two planes intersect, then we can find $(x, y, z) \in \mathbb{R}^{3}$ that satisfies both equations above.
Since there are only two equations with three variables, we fir l (x, y, z) by trial and error.
Set $y=0$. Then

$$
\begin{align*}
& 5 x-2 z=1 \tag{1}\\
& 4 x+z=6 \tag{2}
\end{align*}
$$

(1) +2 (2):

$$
\begin{aligned}
& 5 x-2 z=1 \\
& 8 x+2 z=12 \\
& 13 x=13 \\
& \Rightarrow x=1
\end{aligned}
$$

Thus,

$$
\begin{aligned}
4 x+z & =6 \\
\Rightarrow z & =6-4 x \\
& =6-4(1) \\
& =2 .
\end{aligned}
$$

$S_{9}(1,0,2)$ lies on the intersection of the two planes.
Since the line of intersection of the two planes lies on the two planes, we have this line to the orthogonal to the normals to the planes.
Normal to $5 x-2 y-2 z=1$ is $n_{1}=\langle 5,-2,-2\rangle$
Normal to $4 x+y+z=6$ is $n_{2}=\langle 4,1,1\rangle$
So a vector in the direction of the intersecting bine is

$$
\begin{aligned}
V & =n_{1} \times n_{2} \\
& =\left|\begin{array}{ccc}
i & j & k \\
5 & -2 & -2 \\
4 & 1 & 1
\end{array}\right| \\
& =(-2+2) i-(5+8) j+(5+8) k \\
& =\langle 0,-13,13\rangle \\
& =13\langle 0,-1,1\rangle
\end{aligned}
$$

Thus, a vector equation of the line of intersection of the two planer is

$$
\begin{aligned}
\gamma & =\gamma_{0}+t v \\
& =\langle 1,0,2\rangle+t\langle 0,-1,1\rangle \\
& =\langle 1,-t, 2+t\rangle
\end{aligned}
$$

$\Rightarrow \quad x=1, y=-t$ and $z=2+t$ are the parametric equations
$\Rightarrow \quad x=1, y=-t$ and $z=2+t$ are the parametric equations
$\Rightarrow x=1,-y=z-2$ are the symmetric equations.

71-72 Find the distance from the point to the given plane.
71. $(1,-2,4), \quad 3 x+2 y+6 z=5$

By formula (9) in the book, the distance

$$
\begin{aligned}
\Delta & =\frac{\left|a x_{1}+b y_{1}+c z_{1}+d\right|}{\sqrt{a^{2}+b^{2}+c^{2}}} \\
& =\frac{|3(1)+2(-2)+6(4)-5|}{\sqrt{3^{2}+2^{2}+6^{2}}} \quad \text { since } \quad\langle a, b, c\rangle=\langle 3,2,6\rangle \text { an } \\
& =\frac{18}{\sqrt{49}} \\
& =\frac{18}{7}
\end{aligned}
$$

