3-14 Each of these extreme value problems has a solution with both a maximum value and a minimum value. Use Lagrange multipliers to find the extreme values of the function subject to the given constraint.
3. $f(x, y)=x^{2}-y^{2} ; \quad x^{2}+y^{2}=1$

Let $g(x, y)=x^{2}+y^{2}-1=0$ Then

$$
\begin{aligned}
& \nabla f=\lambda \nabla g \\
& \Rightarrow(2 x,-2 y)=\lambda(2 x, 2 y) \\
& \Rightarrow 2 x=2 \lambda x \text { and }-2 y=2 \lambda y \\
& \Rightarrow x(1-\lambda)=0 \text { an } y(1+\lambda)=0 . \\
& \Rightarrow x=0 \text { or } \lambda=1 \text { and } y(1+\lambda)=0 .
\end{aligned}
$$

If $x=0$, then the constranit gives

$$
0^{2}+y^{2}=1 \Rightarrow y= \pm 1
$$

If $\lambda=1$, then the seam constuin gives

$$
y(1+1)=0 \Rightarrow y=0
$$

Consequently, the constranit gives

$$
x^{2}+0^{2}=1 \Rightarrow x= \pm 1 .
$$

Thus, possible points of extreme values are $(\pm 1,0)$ and $(0, \pm 1)$. Moreover,

$$
\begin{aligned}
& f(-1,0)=f(1,0)=1-0=1 \text { and } \\
& f(0,-1)=f(0,1)=0-1=-1
\end{aligned}
$$

Hence,

* the minimum value of f is $f(0, \pm 1)=-1$
* the maximum value of f is $f(\pm 1,0)=1$
given the constraint.

5. $f(x, y)=x y ; \quad 4 x^{2}+y^{2}=8$

Let $g(x, y)=4 x^{2}+y^{2}-8=0$ Then $\nabla f=\lambda \nabla g$ and $g(x, y)=8$
$\Rightarrow(y, x)=\lambda(8 x, 2 y)$ and $g(x, y)=8$
$\Rightarrow y=8 \lambda x$ and $x=2 \lambda y$ and $4 x^{2}+y^{2}=8$
Notice the three equations imply x or y cannot be zero.
Thus,

$$
\begin{aligned}
& \frac{y}{8 x}=\lambda=\frac{x}{2 y} \text { and } 4 x^{2}+y^{2}=8 \\
\Rightarrow & 2 y^{2}=8 x^{2} \text { and } 4 x^{2}+y^{2}=8 \\
\Rightarrow & y^{2}=4 x^{2} \text { and } 4 x^{2}+y^{2}=8 \\
\Rightarrow & 4 x^{2}+4 x^{2}=8 \\
\Rightarrow & 8 x^{2}=8 \Rightarrow x= \pm 1
\end{aligned}
$$

So $y^{2}=4 x^{2} \Rightarrow y^{2}=4(\pm 1)^{2} \Rightarrow y= \pm 2$.
Thus, possible points of extreme values are $(\pm 1, \pm 2)$.
Furthermore,

$$
\begin{aligned}
& f(1,2)=\left.x y\right|_{(1,2)}=1(2)=2 \\
& f(-1,2)=-1(2)=-2 \\
& f(1,-2)=1(-2)=-2 \\
& f(-1,-2)=-1(-2)=2
\end{aligned}
$$

Hence,
$*$ Lee te. minimum value $f(-1,2)=-2=f(1,-2)$ m

Hence,

* f has the minimum value $f(-1,2)=-2=f(1,-2)$ m
* f has the maximum value $f(1,2)=2=f(-1,-2)$.

11. $f(x, y, z)=x^{2}+y^{2}+z^{2} ; \quad x^{4}+y^{4}+z^{4}=1$

Let $g(x, y, z)=x^{4}+y^{4}+z^{4}-1=0$. Then $\nabla f=\lambda \nabla g$

$$
\begin{aligned}
& \Rightarrow(2 x, 2 y, 2 z)=\lambda\left(4 x^{3}, 4 y^{3}, 4 z^{3}\right) \\
& \Rightarrow 2 x=4 \lambda x^{3}, 2 y=4 \lambda y^{3}, 2 z=4 \lambda z^{3} \text { and } g(x, y, z)=1 . \\
& \Rightarrow 2 x\left(1-2 \lambda x^{2}\right)=0,2 y\left(1-2 \lambda y^{2}\right)=0,2 z\left(1-2 \lambda z^{2}\right)=0 \text { an } g(x, y, z)=1
\end{aligned}
$$

There are three cases for x, y, z that satisfy these four equations.
Case 1: All three variables are nonzero. ie, $x \neq 0$ and $y \neq 0$ add $z+0$.
$\Rightarrow 1-2 \lambda x^{2}=0,1-2 \lambda y^{2}=0$ and $1-2 \lambda z^{2}=0$ an $g(x, y, z)=1$
$\Rightarrow \lambda=\frac{1}{2 x^{2}}, \lambda=\frac{1}{2 y^{2}}$, an $\lambda=\frac{1}{2 z^{2}}$ and $g(x, y, z)=1$

$$
\Rightarrow \quad \frac{1}{2 x^{2}}=\frac{1}{2 y^{2}}=\frac{1}{2 z^{2}} \quad \text { and } \quad g(x, y, z)=1
$$

$$
\Rightarrow \quad x^{2}=y^{2}=z^{2} \quad \text { and } g(x, y, z)=1
$$

from plugging in $z^{2}=x^{2}$ an $y^{2}=x^{2}$, we obtain

$$
\begin{aligned}
& x^{4}+\left(x^{2}\right)^{2}+\left(x^{2}\right)^{2}=1 \\
\Rightarrow \quad & 3 x^{4}=1 \quad \Rightarrow \quad x= \pm \frac{1}{\sqrt[4]{3}}
\end{aligned}
$$

So $\quad z^{2}=x^{2} \Rightarrow z= \pm \frac{1}{\sqrt[4]{3}}$ ad

$$
y^{2}=x^{2} \Rightarrow y= \pm \frac{1}{\sqrt[4]{3}}
$$

Though we obtained many possible points of extreme value (s) for case, fortunately,

$$
\begin{aligned}
f\left(\pm \frac{1}{\sqrt[4]{3}}, \pm \frac{1}{\sqrt[4]{3}}, \pm \frac{1}{\sqrt[4]{3}}\right) & =\left(\pm \frac{1}{\sqrt[4]{3}}\right)^{2}+\left(\pm \frac{1}{\sqrt[4]{3}}\right)^{2}+\left(\pm \frac{1}{\sqrt[4]{3}}\right)^{2} \\
& =\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}} \\
& =\frac{3}{\sqrt{3}}=\sqrt{3} .
\end{aligned}
$$

Case 2: Exactly one of the vanables is zero.
ie; $\begin{cases}x=0 & \text { but } y, z \neq 0 \\ y=0 & \text { but } x, z \neq 0 \\ z=0 & \text { but } x, y \neq 0\end{cases}$
If $x=0$ but $y, z \neq 0$, then

$$
\left.\begin{array}{l}
\text { If } x=0 \text { but } y_{1} z \neq 0 \text {, then } \\
2 y\left(1-2 \lambda y^{2}\right)=0 \Rightarrow 1-2 \lambda y^{2}=0 \Rightarrow \lambda=\frac{1}{2 y^{2}} \\
2 z\left(1-2 \lambda z^{2}\right)=0 \Rightarrow 1-2 \lambda z^{2}=0 \Rightarrow \lambda=\frac{1}{2 z^{2}}
\end{array}\right\} \Rightarrow \frac{1}{2 y^{2}}=\frac{1}{2 z^{2}} \Rightarrow z^{2}=y^{2}
$$

plugging into the constraint gives

$$
\left.\begin{array}{l}
0^{4}+y^{4}+\left(y^{2}\right)^{2}=1 \\
\Rightarrow 2 y^{4}=1 \Rightarrow y= \pm \frac{1}{\sqrt[4]{2}} \\
\Rightarrow z= \pm \frac{1}{\sqrt[4]{2}}
\end{array}\right\}
$$

\Rightarrow Possible extreme value points are $\left(0, \pm \frac{1}{\sqrt[4]{2}}, \pm \frac{1}{\sqrt[4]{2}}\right)$
Similarly, for $y=0$ but $x, z \neq 0$, we obtain the points $\left(\pm \frac{1}{4 \sqrt{2}}, 0, \pm \frac{1}{4 \sqrt{2}}\right)$

Similarly, for $y=0$ but $x, z \neq 0$, we obtain the points $\left(\pm \frac{1}{\sqrt[4]{2}}, v,-\sqrt[4]{2}\right)$ and for $z=0, x, y \neq 0$, the point $\left(\pm \frac{1}{\sqrt[4]{2}}, \pm \frac{1}{\sqrt[4]{2}}, 0\right)$

But

$$
\begin{aligned}
f\left(0, \pm \frac{1}{\sqrt[4]{2}}, \pm \frac{1}{\sqrt[4]{2}}\right)=f\left(\pm \frac{1}{\sqrt[4]{2}}, 0, \pm \frac{1}{4 \sqrt{2}}\right)= & f\left(\pm \frac{1}{\sqrt[4]{2}}, \pm \frac{1}{\sqrt[4]{2}}, 0\right) \\
= & \left(\pm \frac{1}{\sqrt{2}}\right)^{2}+\left(\pm \frac{1}{\sqrt{2}}\right)^{2}+0^{2} \\
= & \frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} \\
& =\frac{2}{\sqrt{2}} \\
& =\sqrt{2}
\end{aligned}
$$

Case 3: Exactly two of the variables are zero.
ie. $\left\{\begin{array}{l}x=0, y=0 \text { but } z \neq 0 \\ x=0, z=0 \text { but } y \neq 0 \\ y=0, z=0 \text { but } x \neq 0\end{array}\right.$
For $x=0, y=0$ but $z \neq 0$, the constraint guvs

$$
0^{4}+0^{4}+z^{4}=1 \Rightarrow z= \pm 1 \Rightarrow(0,0, \pm 1)
$$

For $x=0, z=0$ but $y \neq 0$, we obtain the points $(0, \pm 1,0)$
For $y=0, z=0$ but $x \neq 0$, the points $(\pm 1,0,0)$.
Again,

$$
\begin{aligned}
f(0,0, \pm 1)=f(0, \pm 1,0) & =f(\pm 1,0,0) \\
& =(\pm 1)^{2}+0^{2}+0^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =(\pm 1)^{2}+0^{2}+0^{2} \\
& =1
\end{aligned}
$$

Hence,

* the minimum value of f is 1 which occurs at the pants four above * the maximum value of f is $\sqrt{3}$, occurring at the points form above for the given constraint.

31-43 Use Lagrange multipliers to give an alternate solution to the indicated exercise in Section 14.7.
43. Find the points on the cone $z^{2}=x^{2}+y^{2}$ that are closest to the point $(4,2,0)$.
For any point (x, y, z) on the cone, the distance of it from $(4,2,0)$ is

$$
\begin{aligned}
d & =\sqrt{(x-4)^{2}+(y-2)^{2}+(z-0)^{2}} \\
\Rightarrow & d^{2}=(x-4)^{2}+(y-2)^{2}+z^{2} .
\end{aligned}
$$

Thus, problem is equivalent to

$$
\text { minimize } f(x, y, z)=(x-4)^{2}+(y-2)^{2}+z^{2} \text { subject to } z^{2}=x^{2}+y^{2} \text {. }
$$

Let $g(x, y, z)=x^{2}+y^{2}-z^{2}=0$.

$$
\begin{aligned}
& \nabla f=\lambda \nabla g \\
& \Rightarrow(2(x-4), 2(y-2), 2 z)=\lambda(2 x, 2 y,-2 z) \\
& \Rightarrow 2(x-4)=2 \lambda x, \quad 2(y-2)=2 \lambda y, \quad 2 z=-2 \lambda z \text { an } x^{2}+y^{2}=z^{2} \\
& \Rightarrow x-4=\lambda x \quad y-2=\lambda y, \quad z=-\lambda z \text { an } x^{2}+y^{2}=z^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow x-4=\lambda x \quad y-2=\lambda y, \quad z=-\lambda z \text { an } x^{2}+y^{2}=z- \\
& \Rightarrow x(1-\lambda)=4, \quad y(1-\lambda)=2, \quad z(1+\lambda)=0 \quad \text { and } x^{2}+y^{2}=z^{2}
\end{aligned}
$$

$$
\Rightarrow z=0 \text { or } \lambda=-1
$$

$z=0$ is not possible since $x^{2}+y^{2}=z^{2} \Rightarrow x^{2}+y^{2}=0 \Rightarrow x=y=0$ which do not satisfy the other equations.

So $\lambda=-1$.

$$
\begin{aligned}
& x=-1 \\
& \Rightarrow x(1+1)=4, y(1+1)=2, \quad z^{2}=x^{2}+y^{2} \\
& \Rightarrow x=2, y=1, \quad z^{2}=2^{2}+1^{2}=5 \\
& \Rightarrow x=2, y=1, \quad z= \pm \sqrt{5}
\end{aligned}
$$

Hence, $(2,1, \pm \sqrt{5})$ are the points on the cone closest to $(4,2,0)$.

